You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_checkpoint_io/test_safetensors_async_io.py

128 lines
4.2 KiB

import tempfile
from copy import deepcopy
import torch
from colossalai.utils.safetensors import load_flat, save_nested
try:
from tensornvme.async_file_io import AsyncFileWriter
except ModuleNotFoundError:
raise ModuleNotFoundError("Please install tensornvme to use NVMeOptimizer")
from colossalai.testing import check_state_dict_equal
def test_save_load():
with tempfile.TemporaryDirectory() as tempdir:
optimizer_state_dict = {
0: {"step": torch.tensor(1.0), "exp_avg": torch.rand((1024, 1024)), "exp_avg_sq": torch.rand((1024, 1024))},
1: {"step": torch.tensor(1.0), "exp_avg": torch.rand((1024, 1024)), "exp_avg_sq": torch.rand((1024, 1024))},
2: {"step": torch.tensor(1.0), "exp_avg": torch.rand((1024, 1024)), "exp_avg_sq": torch.rand((1024, 1024))},
}
# group_dict = {"param_groups": [0, 1, 2]}
group_dict = {
"param_groups": [
{
"lr": 0.001,
"betas": (0.9, 0.999),
"eps": 1e-08,
"weight_decay": 0,
"bias_correction": True,
"params": [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
],
}
]
}
metadata = deepcopy(group_dict)
optimizer_saved_path = f"{tempdir}/save_optimizer.safetensors"
f_writer = AsyncFileWriter(fp=open(optimizer_saved_path, "wb"), n_entries=191, backend="pthread")
save_nested(f_writer, optimizer_state_dict, metadata)
f_writer.sync_before_step()
f_writer.synchronize()
f_writer.fp.close()
load_state_dict = load_flat(optimizer_saved_path)
state_dict = load_state_dict["state"]
group = {"param_groups": load_state_dict["param_groups"]}
check_state_dict_equal(optimizer_state_dict, state_dict)
check_state_dict_equal(group_dict, group)
model_state_dict = {
"module.weight0": torch.rand((1024, 1024)),
"module.weight1": torch.rand((1024, 1024)),
"module.weight2": torch.rand((1024, 1024)),
}
model_saved_path = f"{tempdir}/save_model.safetensors"
f_writer = AsyncFileWriter(fp=open(model_saved_path, "wb"), n_entries=191, backend="pthread")
save_nested(f_writer, model_state_dict)
f_writer.sync_before_step()
f_writer.synchronize()
f_writer.fp.close()
load_state_dict = load_flat(model_saved_path)
check_state_dict_equal(model_state_dict, load_state_dict)