ColossalAI/colossalai/utils/safetensors.py

164 lines
5.3 KiB
Python
Raw Normal View History

2024-10-14 07:32:16 +00:00
# a python safetensors serializer modified from https://github.com/huggingface/safetensors/blob/41bd1acf38ad28ac559522d40596c6c802f79453/safetensors/src/tensor.rs#L214
import json
import warnings
2024-10-14 07:32:16 +00:00
from dataclasses import asdict, dataclass
from typing import Dict, List, Optional, Tuple
2024-10-14 07:32:16 +00:00
import torch
from safetensors.torch import _TYPES, load_file, safe_open
2024-10-14 07:32:16 +00:00
2024-10-14 09:41:25 +00:00
try:
from tensornvme.async_file_io import AsyncFileWriter
except ModuleNotFoundError:
raise ModuleNotFoundError("Please install tensornvme to use NVMeOptimizer")
2024-10-14 07:32:16 +00:00
_TYPES_INV = {v: k for k, v in _TYPES.items()}
@dataclass
class TensorInfo:
dtype: str
shape: List[int]
data_offsets: Tuple[int, int]
@dataclass
class PreparedData:
n: int
header_bytes: bytes
offset: int
def flatten_dict(nested_dict, parent_key="", separator="^"):
"""
Flatten a nested dictionary, generating a flattened dictionary where the keys are joined by the specified separator.
nested_dict: The input nested dictionary.
parent_key: The parent key currently being processed.
separator: The separator used to join keys, default is '_', but can be customized to another symbol. :return: A flattened dictionary."
"""
items = []
for k, v in nested_dict.items():
new_key = f"{parent_key}{separator}{k}" if parent_key else str(k)
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, separator).items())
else:
v = torch.tensor(v, dtype=torch.float16) if not isinstance(v, torch.Tensor) else v
items.append((new_key, v))
return dict(items)
def unflatten_dict(flattened_dict, separator="^"):
"""
Restore a flattened dictionary back to a multi-level nested dictionary.
flattened_dict: The flattened dictionary.
separator: The separator used during flattening, default is '_', but can be customized to another symbol. :return: The restored nested dictionary.
"""
nested_dict = {}
for key, value in flattened_dict.items():
keys = key.split(separator)
try:
keys[0] = int(keys[0])
except ValueError:
warnings.warn(f"{key[0]} can't convert to integer")
d = nested_dict
for part in keys[:-1]:
if part not in d:
d[part] = {}
d = d[part]
assert isinstance(value, torch.Tensor)
d[keys[-1]] = value
return nested_dict
def prepare(
data: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None
) -> Tuple[PreparedData, List[torch.Tensor], List[str]]:
if metadata is not None:
assert isinstance(metadata, dict)
for k, v in metadata.items():
metadata[k] = json.dumps(v)
assert isinstance(k, str)
assert isinstance(metadata[k], str)
2024-10-14 07:32:16 +00:00
tensors = []
tensor_keys = []
header = {}
2024-10-14 07:32:16 +00:00
offset = 0
if metadata is not None:
header["__metadata__"] = metadata
for name, tensor in data.items():
2024-10-14 07:32:16 +00:00
n = tensor.numel() * tensor.element_size()
tensor_info = TensorInfo(
dtype=_TYPES_INV[tensor.dtype], shape=list(tensor.shape), data_offsets=(offset, offset + n)
)
offset += n
header[name] = asdict(tensor_info)
2024-10-14 07:32:16 +00:00
tensors.append(tensor)
tensor_keys.append(name)
2024-10-14 07:32:16 +00:00
header_buf = json.dumps(header).encode("utf-8")
2024-10-14 07:32:16 +00:00
extra = (8 - len(header_buf) % 8) % 8
header_buf += b" " * extra
2024-10-14 07:32:16 +00:00
n = len(header_buf)
2024-10-14 07:32:16 +00:00
return PreparedData(n=n, header_bytes=header_buf, offset=offset), tensors, tensor_keys
2024-10-14 09:41:25 +00:00
def save(
f_writer: AsyncFileWriter, state_dict: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None
) -> None:
prepared_data, tensors, _ = prepare(state_dict, metadata)
2024-10-14 09:41:25 +00:00
n, header_bytes, _ = prepared_data.n, prepared_data.header_bytes, prepared_data.offset
f_writer.write(n.to_bytes(8, byteorder="little"))
f_writer.write(header_bytes)
for tensor in tensors:
f_writer.write_raw(tensor, tensor.data_ptr(), tensor.numel() * tensor.element_size(), f_writer.offset)
def save_nested(
f_writer: AsyncFileWriter, state_dict: Dict[str, torch.Tensor], metadata: Optional[Dict[str, str]] = None
) -> None:
flatten_data = flatten_dict(state_dict)
save(f_writer, flatten_data, metadata)
def move_and_save(
f_writer: AsyncFileWriter,
state_dict: Dict[str, torch.Tensor],
state_dict_pinned: Optional[Dict[str, torch.Tensor]] = None,
) -> None:
prepared_data, _, tensor_keys = prepare(state_dict)
n, header_bytes, _ = prepared_data.n, prepared_data.header_bytes, prepared_data.offset
f_writer.write(n.to_bytes(8, byteorder="little"))
f_writer.write(header_bytes)
f_writer.register_h2d(len(tensor_keys))
for name in tensor_keys:
if state_dict_pinned:
f_writer.write_tensor(state_dict[name], state_dict_pinned[name])
else:
f_writer.write_tensor(state_dict[name])
def load_flat(checkpoint_path):
with safe_open(checkpoint_path, framework="pt") as f:
metadata = f.metadata()
state_dict_load = load_file(checkpoint_path)
state_dict = unflatten_dict(state_dict_load)
if metadata is None:
return state_dict
metadata = dict(map(lambda item: (item[0], json.loads(item[1])), metadata.items()))
combined_state_dict = {"state": state_dict}
combined_state_dict.update(metadata)
return combined_state_dict