mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
1.2 KiB
54 lines
1.2 KiB
1 year ago
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from ..registry import model_zoo
|
||
|
from .base import CheckpointModule
|
||
|
|
||
|
|
||
|
class SimpleNet(CheckpointModule):
|
||
|
"""
|
||
|
In this no-leaf module, it has subordinate nn.modules and a nn.Parameter.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, checkpoint=False) -> None:
|
||
|
super().__init__(checkpoint=checkpoint)
|
||
|
self.embed = nn.Embedding(20, 4)
|
||
|
self.proj1 = nn.Linear(4, 8)
|
||
|
self.ln1 = nn.LayerNorm(8)
|
||
|
self.proj2 = nn.Linear(8, 4)
|
||
|
self.ln2 = nn.LayerNorm(4)
|
||
|
self.classifier = nn.Linear(4, 4)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.embed(x)
|
||
|
x = self.proj1(x)
|
||
|
x = self.ln1(x)
|
||
|
x = self.proj2(x)
|
||
|
x = self.ln2(x)
|
||
|
x = self.classifier(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def data_gen():
|
||
|
return dict(x=torch.randint(low=0, high=20, size=(16,)))
|
||
|
|
||
|
|
||
|
def loss_fn(x):
|
||
|
outputs = x["x"]
|
||
|
label = torch.randint(low=0, high=2, size=(16,), device=outputs.device)
|
||
|
return F.cross_entropy(x["x"], label)
|
||
|
|
||
|
|
||
|
def output_transform(x: torch.Tensor):
|
||
|
return dict(x=x)
|
||
|
|
||
|
|
||
|
model_zoo.register(
|
||
|
name="custom_simple_net",
|
||
|
model_fn=SimpleNet,
|
||
|
data_gen_fn=data_gen,
|
||
|
output_transform_fn=output_transform,
|
||
|
loss_fn=loss_fn,
|
||
|
)
|