mirror of https://github.com/hpcaitech/ColossalAI
143 lines
5.1 KiB
Python
143 lines
5.1 KiB
Python
![]() |
from typing import Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from transformers import PreTrainedTokenizer
|
||
|
|
||
|
from colossalai.utils import get_current_device
|
||
|
|
||
|
from .struct import DrafterOutput
|
||
|
|
||
|
|
||
|
class Drafter:
|
||
|
"""Container for the Drafter Model (Assistant Model) used in Speculative Decoding.
|
||
|
|
||
|
Args:
|
||
|
model (nn.Module): The drafter model.
|
||
|
tokenizer (transformers.PreTrainedTokenizer): The tokenizer for the drafter model.
|
||
|
max_spec_num (int): The maximum number of tokens to speculate.
|
||
|
device (torch.device): The device for the drafter model.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, model: nn.Module, tokenizer: PreTrainedTokenizer, max_spec_num: int, device: torch.device = None
|
||
|
):
|
||
|
self._drafter_model = model
|
||
|
self._tokenizer = tokenizer
|
||
|
self.max_spec_num = max_spec_num
|
||
|
self.do_sample = False
|
||
|
self.sample_fn = None
|
||
|
self._device = device or get_current_device()
|
||
|
self._past_key_values = None
|
||
|
|
||
|
@property
|
||
|
def past_key_values(self) -> Optional[Tuple[Tuple[torch.FloatTensor]]]:
|
||
|
return self._past_key_values
|
||
|
|
||
|
# Debug usage for now
|
||
|
@property
|
||
|
def past_key_values_shape(self):
|
||
|
if self._past_key_values is None:
|
||
|
return []
|
||
|
return self._past_key_values[0][0].shape
|
||
|
|
||
|
def get_model(self) -> nn.Module:
|
||
|
return self._drafter_model
|
||
|
|
||
|
def reset_sample_method(self, sample_fn: callable) -> None:
|
||
|
self.do_sample = True
|
||
|
self.sample_fn = sample_fn
|
||
|
|
||
|
def clear_sample_method(self) -> None:
|
||
|
self.do_sample = False
|
||
|
self.sample_fn = None
|
||
|
|
||
|
def reset_max_spec_num(self, n: int) -> None:
|
||
|
assert isinstance(n, int) and n > 1
|
||
|
self.max_spec_num = n
|
||
|
|
||
|
def reset_past_key_values(self, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None) -> None:
|
||
|
self._past_key_values = past_key_values
|
||
|
|
||
|
def trim_kv_cache(self, invalid_token_num) -> Tuple[Tuple[torch.FloatTensor]]:
|
||
|
# Tuple of kv cache tensors: num_layers x 2 x (bsz x num_heads x seq_len x head_dim)
|
||
|
# Trim the last `invalid_token_num` kv caches
|
||
|
# The verifier (main model) might reject `invalid_token_num` tokens,
|
||
|
# and so that we have to trim the invalid tokens for the kv cache of the drafter model.
|
||
|
assert self._past_key_values is not None
|
||
|
trimmed_past_key_values = []
|
||
|
for layer_idx in range(len(self._past_key_values)):
|
||
|
past_key_value = self._past_key_values[layer_idx]
|
||
|
trimmed_past_key_values.append(
|
||
|
(
|
||
|
past_key_value[0][:, :, :-invalid_token_num, :],
|
||
|
past_key_value[1][:, :, :-invalid_token_num, :],
|
||
|
)
|
||
|
)
|
||
|
self._past_key_values = tuple(trimmed_past_key_values)
|
||
|
return self._past_key_values
|
||
|
|
||
|
@torch.inference_mode()
|
||
|
def speculate(
|
||
|
self, input_ids: torch.Tensor, n: int, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None
|
||
|
) -> DrafterOutput:
|
||
|
"""Generate n tokens using the drafter model.
|
||
|
|
||
|
Args:
|
||
|
input_ids (torch.Tensor): Input token ids.
|
||
|
n (int): Number of tokens to speculate.
|
||
|
past_key_values (Tuple[Tuple[torch.FloatTensor]]): The past key values of the input sequence.
|
||
|
"""
|
||
|
|
||
|
assert 0 <= n <= self.max_spec_num, f"Invalid number {n} to speculate"
|
||
|
|
||
|
# FIXME For compatibility with transformers 4.36.2 (versions before 4.38.0)
|
||
|
if input_ids.dim() == 1:
|
||
|
input_ids = input_ids.unsqueeze(0)
|
||
|
|
||
|
if past_key_values is None:
|
||
|
past_key_values = self._past_key_values
|
||
|
|
||
|
logits = []
|
||
|
token_ids = []
|
||
|
|
||
|
for _ in range(n):
|
||
|
outputs = self._drafter_model(
|
||
|
input_ids,
|
||
|
return_dict=True,
|
||
|
use_cache=True,
|
||
|
past_key_values=past_key_values,
|
||
|
)
|
||
|
next_token_logits = outputs.logits[:, -1, :]
|
||
|
|
||
|
# Skip logits_processor for drafter model
|
||
|
|
||
|
# Sample
|
||
|
if self.do_sample:
|
||
|
if self.sample_fn is not None:
|
||
|
probs = self.sample_fn(next_token_logits)
|
||
|
else:
|
||
|
probs = nn.functional.softmax(next_token_logits, dim=-1)
|
||
|
next_token_ids = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||
|
else:
|
||
|
next_token_ids = torch.argmax(next_token_logits, dim=-1)
|
||
|
|
||
|
logits.append(next_token_logits)
|
||
|
token_ids.append(next_token_ids)
|
||
|
if next_token_ids.item() == self._tokenizer.eos_token_id:
|
||
|
# TODO support bsz > 1
|
||
|
break
|
||
|
input_ids = next_token_ids[:, None]
|
||
|
past_key_values = outputs.past_key_values
|
||
|
|
||
|
speculated_length = len(token_ids) # TODO For now, only support bsz 1
|
||
|
logits = torch.concat(logits, dim=0)
|
||
|
token_ids = torch.concat(token_ids, dim=-1)
|
||
|
# update past_key_values
|
||
|
self._past_key_values = past_key_values
|
||
|
|
||
|
out = DrafterOutput(
|
||
|
speculated_length=speculated_length, logits=logits, next_tokens=token_ids, past_key_values=past_key_values
|
||
|
)
|
||
|
return out
|