2022-07-26 09:25:24 +00:00
|
|
|
import torch
|
2023-04-06 06:51:35 +00:00
|
|
|
|
2022-07-26 09:25:24 +00:00
|
|
|
from colossalai.nn.optimizer import CPUAdam, HybridAdam
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import clear_cache_before_run, parameterize
|
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
2022-07-26 09:25:24 +00:00
|
|
|
|
|
|
|
|
|
|
|
def move_some_params_to_cuda(model, torch_model):
|
|
|
|
model.embed.weight.data = model.embed.weight.cuda()
|
|
|
|
torch_model.embed.weight.data = model.embed.weight.cuda()
|
|
|
|
model.ln1.weight.data = model.ln1.weight.cuda()
|
|
|
|
torch_model.ln1.weight.data = model.ln1.weight.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
def check_params_equal(model, torch_model):
|
|
|
|
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
2023-09-19 06:20:26 +00:00
|
|
|
assert torch.allclose(p, torch_p, atol=1e-3), f"diff: {torch.abs(p - torch_p)}"
|
2022-07-26 09:25:24 +00:00
|
|
|
|
|
|
|
|
2023-04-06 06:51:35 +00:00
|
|
|
@clear_cache_before_run()
|
2023-09-19 06:20:26 +00:00
|
|
|
@parameterize("nvme_offload_fraction", [0.0, 0.5, 1.0])
|
|
|
|
@parameterize("nvme_offload_dir", ["./offload", None])
|
|
|
|
@parameterize("adam_cls", [CPUAdam, HybridAdam])
|
2022-07-26 09:25:24 +00:00
|
|
|
def test_nvme_adam(nvme_offload_fraction, nvme_offload_dir, adam_cls):
|
2023-09-19 06:20:26 +00:00
|
|
|
get_components_func = non_distributed_component_funcs.get_callable("simple_net")
|
2022-07-26 09:25:24 +00:00
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
model = model_builder()
|
|
|
|
torch_model = model_builder()
|
|
|
|
move_some_params_to_cuda(model, torch_model)
|
2023-09-19 06:20:26 +00:00
|
|
|
optimizer = adam_cls(
|
|
|
|
model.parameters(), lr=0.1, nvme_offload_fraction=nvme_offload_fraction, nvme_offload_dir=nvme_offload_dir
|
|
|
|
)
|
2022-07-26 09:25:24 +00:00
|
|
|
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=0.1)
|
|
|
|
with torch.no_grad():
|
|
|
|
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
|
|
|
torch_p.copy_(p)
|
|
|
|
p.grad = torch.rand_like(p)
|
|
|
|
torch_p.grad = p.grad
|
|
|
|
|
|
|
|
for _ in range(3):
|
|
|
|
optimizer.step()
|
|
|
|
torch_optimizer.step()
|
|
|
|
check_params_equal(model, torch_model)
|
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
test_nvme_adam(0.5, "./offload", CPUAdam)
|