2021-12-21 04:19:52 +00:00
|
|
|
/*This code from NVIDIA Megatron:
|
|
|
|
* with minor changes. */
|
|
|
|
|
|
|
|
#include <cuda_fp16.h>
|
|
|
|
#include <torch/extension.h>
|
2023-09-19 06:20:26 +00:00
|
|
|
|
2021-12-21 04:19:52 +00:00
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
namespace multihead_attn {
|
|
|
|
namespace fused_softmax {
|
|
|
|
namespace scaled_masked_softmax {
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& mask,
|
|
|
|
float scale_factor);
|
|
|
|
|
|
|
|
torch::Tensor bwd_cuda(torch::Tensor const& output_grads,
|
|
|
|
torch::Tensor const& softmax_results,
|
|
|
|
float scale_factor);
|
|
|
|
|
|
|
|
int get_batch_per_block_cuda(int query_seq_len, int key_seq_len, int batches,
|
|
|
|
int attn_heads);
|
|
|
|
|
|
|
|
torch::Tensor fwd(torch::Tensor const& input, torch::Tensor const& mask,
|
|
|
|
float scale_factor) {
|
2021-12-21 04:19:52 +00:00
|
|
|
AT_ASSERTM(input.dim() == 4, "expected 4D tensor");
|
|
|
|
AT_ASSERTM((input.scalar_type() == at::ScalarType::Half) ||
|
2023-09-19 06:20:26 +00:00
|
|
|
(input.scalar_type() == at::ScalarType::BFloat16),
|
|
|
|
"Only fp16 and bf16 are supported");
|
2021-12-21 04:19:52 +00:00
|
|
|
AT_ASSERTM(mask.dim() == 4, "expected 4D tensor");
|
|
|
|
|
|
|
|
return fwd_cuda(input, mask, scale_factor);
|
|
|
|
}
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
torch::Tensor bwd(torch::Tensor const& output_grads,
|
|
|
|
torch::Tensor const& softmax_results, float scale_factor) {
|
2021-12-21 04:19:52 +00:00
|
|
|
AT_ASSERTM(output_grads.dim() == 4, "expected 3D tensor");
|
|
|
|
AT_ASSERTM(softmax_results.dim() == 4, "expected 3D tensor");
|
|
|
|
|
|
|
|
AT_ASSERTM((output_grads.scalar_type() == at::ScalarType::Half) ||
|
2023-09-19 06:20:26 +00:00
|
|
|
(output_grads.scalar_type() == at::ScalarType::BFloat16),
|
|
|
|
"Only fp16 and bf16 are supported");
|
2021-12-21 04:19:52 +00:00
|
|
|
AT_ASSERTM((softmax_results.scalar_type() == at::ScalarType::Half) ||
|
2023-09-19 06:20:26 +00:00
|
|
|
(softmax_results.scalar_type() == at::ScalarType::BFloat16),
|
|
|
|
"Only fp16 and bf16 are supported");
|
2021-12-21 04:19:52 +00:00
|
|
|
|
|
|
|
return bwd_cuda(output_grads, softmax_results, scale_factor);
|
|
|
|
}
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
int get_batch_per_block(int query_seq_len, int key_seq_len, int batches,
|
|
|
|
int attn_heads) {
|
|
|
|
return get_batch_per_block_cuda(query_seq_len, key_seq_len, batches,
|
|
|
|
attn_heads);
|
2021-12-21 04:19:52 +00:00
|
|
|
}
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
} // end namespace scaled_masked_softmax
|
|
|
|
} // end namespace fused_softmax
|
|
|
|
} // end namespace multihead_attn
|
2021-12-21 04:19:52 +00:00
|
|
|
|
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
2023-09-19 06:20:26 +00:00
|
|
|
m.def("forward", &multihead_attn::fused_softmax::scaled_masked_softmax::fwd,
|
|
|
|
"Self Multihead Attention scaled, time masked softmax -- Forward.");
|
2021-12-21 04:19:52 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
m.def("backward", &multihead_attn::fused_softmax::scaled_masked_softmax::bwd,
|
|
|
|
"Self Multihead Attention scaled, time masked softmax -- Backward.");
|
2021-12-21 04:19:52 +00:00
|
|
|
|
|
|
|
m.def("get_batch_per_block",
|
2023-09-19 06:20:26 +00:00
|
|
|
&multihead_attn::fused_softmax::scaled_masked_softmax::
|
|
|
|
get_batch_per_block,
|
|
|
|
"Return Batch per block size.");
|
2021-12-21 04:19:52 +00:00
|
|
|
}
|