ColossalAI/colossalai/auto_parallel/meta_profiler/meta_registry/tensor.py

80 lines
3.2 KiB
Python
Raw Normal View History

from typing import Callable, List, Tuple
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from ..registry import meta_register
__all__ = ["tensor_related_metainfo"]
def tensor_related_metainfo(bwd_mem_out_factor: float = 1, bwd_mem_tmp_factor: float = 0) -> Callable:
"""torch.Tensor related metainfo generator template
Args:
bwd_mem_out_factor (float, optional): backward activation memory cost factor. Defaults to 1.
bwd_mem_tmp_factor (float, optional): backward temp memory cost factor. Defaults to 0.
Returns:
Callable: torch.Tensor related metainfo generator
"""
def meta_func(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""torch.Tensor related metainfo generator
Returns:
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
"""
outputs = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
# compute costs are all zero
compute_cost = TrainCycleItem(fwd=0, bwd=0, total=0)
# memory costs
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
fwd_mem_cost = MemoryCost(activation=activation_size(outputs) * 2, parameter=0, temp=0, buffer=0)
bwd_mem_cost = MemoryCost(activation=activation_size(outputs) * bwd_mem_out_factor,
parameter=0,
temp=activation_size(outputs) * bwd_mem_tmp_factor,
buffer=0)
total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation,
parameter=fwd_mem_cost.parameter + bwd_mem_cost.parameter,
temp=fwd_mem_cost.temp + bwd_mem_cost.temp,
buffer=fwd_mem_cost.buffer + bwd_mem_cost.buffer)
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
# store fwd_in, fwd_buffer, fwd_out
fwd_in = []
fwd_buffer = []
if isinstance(outputs, tuple) or isinstance(outputs, list) or isinstance(outputs, dict):
# tuple of tensors
fwd_out = [torch.zeros_like(tensor) for tensor in outputs]
else:
# enaged_tensors is a single tensor
fwd_out = [torch.zeros_like(outputs)]
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
return meta_func
# register torch.Tensor related metainfo
# (0, 0)
meta_register.register([torch.tensor, torch.Tensor.to, torch.Tensor.unsqueeze, torch.unsqueeze,
torch.arange])(tensor_related_metainfo(0, 0))
# (1, 0)
meta_register.register([
torch.Tensor.flatten, torch.flatten, torch.Tensor.transpose, torch.transpose, torch.Tensor.permute, torch.permute,
torch.Tensor.split, torch.split, torch.Tensor.view
])(tensor_related_metainfo(1, 0))
# (1, 1)
meta_register.register([torch.Tensor.type, torch.Tensor.contiguous])(tensor_related_metainfo(1, 1))