2022-11-08 07:05:26 +00:00
|
|
|
from typing import Callable, Dict, List, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
|
|
|
MemoryCost,
|
|
|
|
OperationData,
|
|
|
|
OperationDataType,
|
|
|
|
ShardingStrategy,
|
|
|
|
StrategiesVector,
|
|
|
|
TrainCycleItem,
|
|
|
|
)
|
|
|
|
from colossalai.fx.profiler.memory_utils import activation_size
|
|
|
|
from colossalai.fx.profiler.opcount import flop_mapping
|
|
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
|
|
|
|
|
|
from ..registry import meta_register
|
|
|
|
|
2023-02-10 06:29:24 +00:00
|
|
|
__all__ = ['batchnormnd_meta_info', 'layernorm_meta_info']
|
2022-11-08 07:05:26 +00:00
|
|
|
|
|
|
|
|
|
|
|
@meta_register.register(torch.nn.BatchNorm1d)
|
|
|
|
@meta_register.register(torch.nn.BatchNorm2d)
|
|
|
|
@meta_register.register(torch.nn.BatchNorm3d)
|
2022-11-16 15:12:31 +00:00
|
|
|
def batchnormnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
2022-11-08 07:05:26 +00:00
|
|
|
"""BatchNorm1d, BatchNorm2d, BatchNorm3d, meta info generator
|
|
|
|
The aten graph of BatchNorm2d is like
|
|
|
|
|
|
|
|
graph():
|
|
|
|
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
|
|
|
%cudnn_batch_norm_default : [#users=4] = call_function[target=torch.ops.aten.cudnn_batch_norm.default](args = (%input_2, None, None, None, None, None, None, None), kwargs = {})
|
|
|
|
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%cudnn_batch_norm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
|
|
|
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
|
|
|
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
|
|
|
|
%detach_default_2 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
|
|
|
|
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
|
|
|
|
%cudnn_batch_norm_backward_default : [#users=3] = call_function[target=torch.ops.aten.cudnn_batch_norm_backward.default](args = (%detach_default, %zeros_like_default, None, None, None, %detach_default_1, %detach_default_2, None, %detach_default_3), kwargs = {})
|
|
|
|
%detach_default_4 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
|
|
|
|
%detach_default_5 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_4,), kwargs = {})
|
|
|
|
%detach_default_6 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
|
|
|
|
%detach_default_7 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_6,), kwargs = {})
|
|
|
|
%detach_default_8 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
|
|
|
|
%detach_default_9 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_8,), kwargs = {})
|
|
|
|
Returns:
|
|
|
|
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
|
|
|
"""
|
|
|
|
|
2022-12-20 02:31:22 +00:00
|
|
|
input_tensor = args[0].data
|
2022-11-08 07:05:26 +00:00
|
|
|
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
|
|
|
weight_tensor = next(filter(lambda x: x.name == "weight", args)).data
|
|
|
|
bias_tensor = next(filter(lambda x: x.name == "bias", args)).data
|
|
|
|
mean_tensor = next(filter(lambda x: x.name == "running_mean", args)).data
|
|
|
|
var_tensor = next(filter(lambda x: x.name == "running_var", args)).data
|
|
|
|
num_batch = next(filter(lambda x: x.name == "num_batches_tracked", args)).data
|
|
|
|
|
|
|
|
# construct fwd args
|
|
|
|
# the fwd inputs are input, weight, bias, running_mean, running_var and some other args
|
|
|
|
# indicating the status of the module
|
|
|
|
# the fwd outputs are output, saved mean, saved inv std and num batches tracked
|
|
|
|
fwd_in_args = [input_tensor, weight_tensor, bias_tensor, mean_tensor, var_tensor, True, 0.1, 1e-5]
|
|
|
|
fwd_out_args = [output_tensor, mean_tensor, var_tensor, num_batch]
|
|
|
|
|
|
|
|
# construct bwd args
|
|
|
|
# the bwd inputs are upstream grad, input, weight, running_mean, running_var, saved mean,
|
|
|
|
# saved inv std and some other args indicating the status of the module
|
|
|
|
# the bwd outputs are input grad, weight grad and bias grad
|
|
|
|
bwd_in_args = [
|
|
|
|
output_tensor, output_tensor, weight_tensor, mean_tensor, var_tensor, mean_tensor, var_tensor, 1e-5, num_batch
|
|
|
|
]
|
|
|
|
bwd_out_args = [input_tensor, weight_tensor, bias_tensor]
|
|
|
|
|
|
|
|
# calculate cost
|
|
|
|
fwd_compute_cost = flop_mapping[torch.ops.aten.cudnn_batch_norm.default](fwd_in_args, fwd_out_args)
|
|
|
|
bwd_compute_cost = flop_mapping[torch.ops.aten.cudnn_batch_norm_backward.default](bwd_in_args, bwd_out_args)
|
|
|
|
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
|
|
|
|
|
|
|
# calculate memory cost
|
|
|
|
# the fwd activation cost is output plus saved mean and saved inv std
|
2022-12-04 07:00:16 +00:00
|
|
|
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
|
|
|
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, mean_tensor, var_tensor]),
|
2022-11-08 07:05:26 +00:00
|
|
|
parameter=activation_size([weight_tensor, bias_tensor]),
|
|
|
|
temp=0,
|
|
|
|
buffer=activation_size([mean_tensor, var_tensor]))
|
|
|
|
|
|
|
|
# the bwd memory cost is quite tricky here, BatchNorm will remove saved mean
|
|
|
|
# and saved inv std during backward phase
|
|
|
|
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor]),
|
|
|
|
parameter=activation_size([weight_tensor, bias_tensor]),
|
|
|
|
temp=activation_size([mean_tensor, var_tensor]),
|
|
|
|
buffer=activation_size([mean_tensor, var_tensor]))
|
|
|
|
|
|
|
|
# total cost is the sum of forward and backward cost
|
|
|
|
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
|
|
|
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
|
|
|
|
|
|
|
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
|
|
|
|
2022-12-28 05:37:40 +00:00
|
|
|
# store fwd_in, fwd_buffer, fwd_out
|
|
|
|
fwd_in = [torch.zeros_like(input_tensor, device='meta')]
|
|
|
|
fwd_buffer = [torch.zeros_like(mean_tensor, device='meta'), torch.zeros_like(var_tensor, device='meta')]
|
|
|
|
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
|
2022-11-08 07:05:26 +00:00
|
|
|
|
2022-12-28 05:37:40 +00:00
|
|
|
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|
2023-02-10 06:29:24 +00:00
|
|
|
|
|
|
|
|
|
|
|
@meta_register.register(torch.nn.LayerNorm)
|
|
|
|
def layernorm_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
|
|
|
"""LayerNorm meta information
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
|
|
|
"""
|
|
|
|
# construct needed tensors
|
|
|
|
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
|
|
|
|
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
|
|
|
weight_tensor = next(filter(lambda x: x.name == "weight", args)).data
|
|
|
|
bias_tensor = next(filter(lambda x: x.name == "bias", args)).data
|
|
|
|
running_mean = torch.rand(input_tensor.shape[0], 1, device='meta')
|
|
|
|
running_var = torch.rand(input_tensor.shape[0], 1, device='meta')
|
|
|
|
|
|
|
|
# construct args
|
|
|
|
fwd_in_args = [input_tensor, [input_tensor.shape[0]], weight_tensor]
|
|
|
|
fwd_out_args = [output_tensor]
|
|
|
|
bwd_in_args = [input_tensor, output_tensor, [input_tensor.shape[0]]]
|
|
|
|
bwd_out_args = [weight_tensor, bias_tensor]
|
|
|
|
|
|
|
|
# compute cost
|
|
|
|
fwd_compute_cost = flop_mapping[torch.ops.aten.native_layer_norm.default](fwd_in_args, fwd_out_args)
|
|
|
|
bwd_compute_cost = flop_mapping[torch.ops.aten.native_layer_norm_backward.default](bwd_in_args, bwd_out_args)
|
|
|
|
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
|
|
|
|
|
|
|
# memory cost
|
|
|
|
# NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward
|
|
|
|
fwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, output_tensor, weight_tensor, bias_tensor]),
|
|
|
|
parameter=activation_size([weight_tensor, bias_tensor]),
|
|
|
|
temp=0,
|
|
|
|
buffer=activation_size([running_mean, running_var]))
|
|
|
|
|
|
|
|
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor, weight_tensor, bias_tensor]),
|
|
|
|
parameter=activation_size([weight_tensor, bias_tensor]),
|
|
|
|
temp=activation_size([running_mean, running_var]),
|
|
|
|
buffer=activation_size([running_mean, running_var]))
|
|
|
|
|
|
|
|
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
|
|
|
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter,
|
|
|
|
temp=fwd_memory_cost.temp + bwd_memory_cost.temp,
|
|
|
|
buffer=fwd_memory_cost.buffer + bwd_memory_cost.buffer)
|
|
|
|
|
|
|
|
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
|
|
|
|
|
|
|
# store fwd_in, fwd_buffer, fwd_out
|
|
|
|
fwd_in = [torch.zeros_like(input_tensor, device='meta')]
|
|
|
|
fwd_buffer = [torch.zeros_like(running_mean, device='meta'), torch.zeros_like(running_var, device='meta')]
|
|
|
|
fwd_out = [torch.zeros_like(output_tensor, device='meta')]
|
|
|
|
|
|
|
|
return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out
|