ColossalAI/colossalai/shardformer/modeling/bloom.py

1044 lines
48 KiB
Python
Raw Normal View History

import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
[Shardformer] Merge flash attention branch to pipeline branch (#4362) * [shardformer] supported flash attention test dependency (#4158) * [shardformer] fix flash attention utils test (#4180) * [shardformer] opt support flash attention (#4163) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] add performance benchmark of shardformer (#4175) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] benchmark fix * [shardformer] benchmark fix * [shardformer] llama support flash attention (#4185) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] llama support flash attention * [shardformer] llama support flash attention * [shardformer] Move the import statement for xformer outside the forward function. * [shardformer] gpt2 support flash attention. (#4191) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] bloom support flash attention (#4188) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom suport flash attention * [shardformer] add assert to sequence length * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] bert support flash attention. (#4206) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bert support flash attention * [shardformer] t5 support flash attention. (#4216) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 support flash attention * [shardformer] t5 support flash attention * fix typo * fix typo * fix typo * fix typo * fix typo * fix typo * [shardformer] support 'paddedcausal' type of attention mask in Coloattention. (#4215) * added padded causal attn mask type for ColoAttention * [shardformer]t5 flash attention fix (#4239) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 flash attention fix * [shardformer] update gpt2 to use coloattention. (#4234) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 * [shardformer] update opt and llama to use coloattention. (#4226) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt * [shardformer] shardformer support jit fused operator. (#4236) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add type hint to 'self' param of forward * [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] whisper support flash attention (#4301) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] whisper support flash attention * [shardformer] whisper support flash attention * [shardformer]whisper support jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] sam support flash attention (#4316) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] sam support flash attention --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] merge blip2/chatglm (#4321) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] blip2 support flash attention and jit operator (#4325) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] chatglm support flash attention and jit operator (#4330) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] vit support flash attention and jit operator (#4334) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] vit support flash attention and jit operator * [shardformer] vit support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] fix conflict * [pipeline] fix conflict * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * fix flash attention tests * gemini ignore whisper * fix vit * fix xformers import handle --------- Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com>
2023-08-07 08:41:07 +00:00
from torch.nn import functional as F
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.models.bloom.modeling_bloom import (
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
)
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
from colossalai.shardformer.shard import ShardConfig
from ..layer import dist_cross_entropy
logger = logging.get_logger(__name__)
def build_bloom_alibi_tensor_fn(process_group: ProcessGroup) -> torch.Tensor:
def build_bloom_alibi_tensor(
self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype
) -> torch.Tensor:
"""
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
`softmax(l+a) = softmax(l)`. Based on
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
Args:
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
attention_mask (`torch.Tensor`):
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
num_heads (`int`, *required*):
number of heads
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
dtype of the output tensor
"""
import math
if dist.is_initialized():
world_size = dist.get_world_size(process_group)
num_heads = num_heads * world_size
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
device=attention_mask.device,
dtype=torch.float32,
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(
1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32
)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None] * arange_tensor
if dist.is_initialized():
num_heads_per_rank = int(num_heads / dist.get_world_size(process_group))
offset = dist.get_rank(process_group) * num_heads_per_rank
alibi = alibi.view(batch_size, num_heads, 1, seq_length)
alibi = alibi[:, offset : num_heads_per_rank + offset, :, :]
return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype)
else:
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
return build_bloom_alibi_tensor
class BloomPipelineForwards:
"""
This class serves as a micro library for bloom pipeline forwards.
"""
@staticmethod
def bloom_model_forward(
self: BloomModel,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor, ...], "BaseModelOutputWithPastAndCrossAttentions"]:
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# add warnings here
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
if use_cache:
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
use_cache = False
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape batch_size x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
# case: First stage of training
if stage_manager.is_first_stage():
# check input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
# initialize in the first stage and then pass to the next stage
else:
input_shape = hidden_states.shape[:-1]
batch_size, seq_length = input_shape
# extra recording tensor should be generated in the first stage
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if past_key_values is None:
past_key_values = tuple([None] * len(self.h))
# Compute alibi tensor: check build_alibi_tensor documentation,build for every stage
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[2] # source_len
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
else:
attention_mask = attention_mask.to(hidden_states.device)
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
# causal_mask is constructed every stage and its input is passed through different stages
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
causal_mask = _prepare_4d_causal_attention_mask(
attention_mask,
input_shape=(batch_size, seq_length),
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
inputs_embeds=hidden_states,
past_key_values_length=past_key_values_length,
)
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
causal_mask = causal_mask.bool()
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
[shardformer] Sequence Parallelism Optimization (#5533) * sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
2024-04-03 09:15:47 +00:00
if shard_config and shard_config.enable_sequence_parallelism:
if shard_config.sequence_parallelism_mode == "split_gather":
hidden_states = split_forward_gather_backward(
hidden_states, dim=1, process_group=shard_config.tensor_parallel_process_group
)
start_idx, end_idx = stage_index[0], stage_index[1]
for i, (block, layer_past) in enumerate(
zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]), start=start_idx
):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
alibi,
causal_mask,
layer_past,
head_mask[i],
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
alibi=alibi,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# When sequence parallelism done, gather the output tensor in forward and split it in backward
[shardformer] Sequence Parallelism Optimization (#5533) * sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
2024-04-03 09:15:47 +00:00
if shard_config and shard_config.enable_sequence_parallelism:
if shard_config.sequence_parallelism_mode == "split_gather":
hidden_states = gather_forward_split_backward(
hidden_states, dim=1, process_group=shard_config.tensor_parallel_process_group
)
if stage_manager.is_last_stage():
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
# TODO(jianghai): deal with all_hidden_states, all_self_attentions, presents
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if stage_manager.is_last_stage():
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None
)
# attention_mask is not returned ; presents = past_key_values
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
else:
# always return dict for imediate stage
return {"hidden_states": hidden_states}
@staticmethod
def bloom_for_causal_lm_forward(
self: BloomForCausalLM,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
**deprecated_arguments,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
transformer_outputs = BloomPipelineForwards.bloom_model_forward(
self.transformer,
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
shard_config=shard_config,
)
past_key_values = None
if stage_manager.is_last_stage():
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states).contiguous()
loss = dist_cross_entropy(
labels,
lm_logits,
shard_config,
self.lm_head.out_features,
self.config.vocab_size,
self.transformer.dtype,
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
hidden_states = transformer_outputs.get("hidden_states")
return {"hidden_states": hidden_states}
@staticmethod
def bloom_for_sequence_classification_forward(
self: BloomForSequenceClassification,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
**deprecated_arguments,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
transformer_outputs = BloomPipelineForwards.bloom_model_forward(
self.transformer,
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
shard_config=shard_config,
)
past_key_values = None
if stage_manager.is_last_stage():
batch_size = hidden_states.shape[0]
# update batch size
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
hidden_states = transformer_outputs.get("hidden_states")
return {"hidden_states": hidden_states}
@staticmethod
def bloom_for_token_classification_forward(
self: BloomForTokenClassification,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
**deprecated_arguments,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
transformer_outputs = BloomPipelineForwards.bloom_model_forward(
self.transformer,
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
shard_config=shard_config,
)
past_key_values = None
if stage_manager.is_last_stage():
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
batch_size, seq_length = labels.shape
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
)
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
hidden_states = transformer_outputs.get("hidden_states")
return {"hidden_states": hidden_states}
@staticmethod
def bloom_for_question_answering_forward(
self: BloomForQuestionAnswering,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
logger = logging.get_logger(__name__)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
outputs = BloomPipelineForwards.bloom_model_forward(
self.transformer,
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
shard_config=shard_config,
)
if stage_manager.is_last_stage():
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
else:
hidden_states = outputs.get("hidden_states")
return {"hidden_states": hidden_states}
[Shardformer] Merge flash attention branch to pipeline branch (#4362) * [shardformer] supported flash attention test dependency (#4158) * [shardformer] fix flash attention utils test (#4180) * [shardformer] opt support flash attention (#4163) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] add performance benchmark of shardformer (#4175) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] benchmark fix * [shardformer] benchmark fix * [shardformer] llama support flash attention (#4185) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] llama support flash attention * [shardformer] llama support flash attention * [shardformer] Move the import statement for xformer outside the forward function. * [shardformer] gpt2 support flash attention. (#4191) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] bloom support flash attention (#4188) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom suport flash attention * [shardformer] add assert to sequence length * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] bert support flash attention. (#4206) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bert support flash attention * [shardformer] t5 support flash attention. (#4216) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 support flash attention * [shardformer] t5 support flash attention * fix typo * fix typo * fix typo * fix typo * fix typo * fix typo * [shardformer] support 'paddedcausal' type of attention mask in Coloattention. (#4215) * added padded causal attn mask type for ColoAttention * [shardformer]t5 flash attention fix (#4239) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 flash attention fix * [shardformer] update gpt2 to use coloattention. (#4234) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 * [shardformer] update opt and llama to use coloattention. (#4226) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt * [shardformer] shardformer support jit fused operator. (#4236) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add type hint to 'self' param of forward * [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] whisper support flash attention (#4301) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] whisper support flash attention * [shardformer] whisper support flash attention * [shardformer]whisper support jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] sam support flash attention (#4316) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] sam support flash attention --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] merge blip2/chatglm (#4321) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] blip2 support flash attention and jit operator (#4325) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] chatglm support flash attention and jit operator (#4330) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] vit support flash attention and jit operator (#4334) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] vit support flash attention and jit operator * [shardformer] vit support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] fix conflict * [pipeline] fix conflict * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * fix flash attention tests * gemini ignore whisper * fix vit * fix xformers import handle --------- Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com>
2023-08-07 08:41:07 +00:00
def get_jit_fused_bloom_attention_forward():
from transformers.models.bloom.modeling_bloom import BloomAttention
def forward(
self: BloomAttention,
hidden_states: torch.Tensor,
residual: torch.Tensor,
alibi: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
[Shardformer] Merge flash attention branch to pipeline branch (#4362) * [shardformer] supported flash attention test dependency (#4158) * [shardformer] fix flash attention utils test (#4180) * [shardformer] opt support flash attention (#4163) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] add performance benchmark of shardformer (#4175) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] benchmark fix * [shardformer] benchmark fix * [shardformer] llama support flash attention (#4185) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] llama support flash attention * [shardformer] llama support flash attention * [shardformer] Move the import statement for xformer outside the forward function. * [shardformer] gpt2 support flash attention. (#4191) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] bloom support flash attention (#4188) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom suport flash attention * [shardformer] add assert to sequence length * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] bert support flash attention. (#4206) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bert support flash attention * [shardformer] t5 support flash attention. (#4216) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 support flash attention * [shardformer] t5 support flash attention * fix typo * fix typo * fix typo * fix typo * fix typo * fix typo * [shardformer] support 'paddedcausal' type of attention mask in Coloattention. (#4215) * added padded causal attn mask type for ColoAttention * [shardformer]t5 flash attention fix (#4239) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 flash attention fix * [shardformer] update gpt2 to use coloattention. (#4234) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 * [shardformer] update opt and llama to use coloattention. (#4226) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt * [shardformer] shardformer support jit fused operator. (#4236) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add type hint to 'self' param of forward * [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] whisper support flash attention (#4301) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] whisper support flash attention * [shardformer] whisper support flash attention * [shardformer]whisper support jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] sam support flash attention (#4316) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] sam support flash attention --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] merge blip2/chatglm (#4321) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] blip2 support flash attention and jit operator (#4325) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] chatglm support flash attention and jit operator (#4330) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] vit support flash attention and jit operator (#4334) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] vit support flash attention and jit operator * [shardformer] vit support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] fix conflict * [pipeline] fix conflict * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * fix flash attention tests * gemini ignore whisper * fix vit * fix xformers import handle --------- Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com>
2023-08-07 08:41:07 +00:00
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, q_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
if layer_past is not None:
past_key, past_value = layer_past
# concatenate along seq_length dimension:
# - key: [batch_size * self.num_heads, head_dim, kv_length]
# - value: [batch_size * self.num_heads, kv_length, head_dim]
key_layer = torch.cat((past_key, key_layer), dim=2)
value_layer = torch.cat((past_value, value_layer), dim=1)
_, _, kv_length = key_layer.shape
if use_cache is True:
present = (key_layer, value_layer)
else:
present = None
# [batch_size * num_heads, q_length, kv_length]
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
matmul_result = alibi.baddbmm(
batch1=query_layer,
batch2=key_layer,
beta=self.beta,
alpha=self.inv_norm_factor,
)
# change view to [batch_size, num_heads, q_length, kv_length]
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
input_dtype = attention_scores.dtype
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
if input_dtype == torch.float16:
attention_scores = attention_scores.to(torch.float)
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
# [batch_size, num_heads, q_length, kv_length]
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
# change view [batch_size x num_heads, q_length, kv_length]
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
# matmul: [batch_size * num_heads, q_length, head_dim]
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
# change view [batch_size, num_heads, q_length, head_dim]
context_layer = self._merge_heads(context_layer)
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
if self.pretraining_tp > 1 and self.slow_but_exact:
slices = self.hidden_size / self.pretraining_tp
output_tensor = torch.zeros_like(context_layer)
for i in range(self.pretraining_tp):
output_tensor = output_tensor + F.linear(
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
[Shardformer] Merge flash attention branch to pipeline branch (#4362) * [shardformer] supported flash attention test dependency (#4158) * [shardformer] fix flash attention utils test (#4180) * [shardformer] opt support flash attention (#4163) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] add performance benchmark of shardformer (#4175) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] benchmark fix * [shardformer] benchmark fix * [shardformer] llama support flash attention (#4185) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] llama support flash attention * [shardformer] llama support flash attention * [shardformer] Move the import statement for xformer outside the forward function. * [shardformer] gpt2 support flash attention. (#4191) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] bloom support flash attention (#4188) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom suport flash attention * [shardformer] add assert to sequence length * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] bert support flash attention. (#4206) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bert support flash attention * [shardformer] t5 support flash attention. (#4216) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 support flash attention * [shardformer] t5 support flash attention * fix typo * fix typo * fix typo * fix typo * fix typo * fix typo * [shardformer] support 'paddedcausal' type of attention mask in Coloattention. (#4215) * added padded causal attn mask type for ColoAttention * [shardformer]t5 flash attention fix (#4239) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 flash attention fix * [shardformer] update gpt2 to use coloattention. (#4234) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 * [shardformer] update opt and llama to use coloattention. (#4226) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt * [shardformer] shardformer support jit fused operator. (#4236) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add type hint to 'self' param of forward * [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] whisper support flash attention (#4301) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] whisper support flash attention * [shardformer] whisper support flash attention * [shardformer]whisper support jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] sam support flash attention (#4316) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] sam support flash attention --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] merge blip2/chatglm (#4321) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] blip2 support flash attention and jit operator (#4325) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] chatglm support flash attention and jit operator (#4330) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] vit support flash attention and jit operator (#4334) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] vit support flash attention and jit operator * [shardformer] vit support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] fix conflict * [pipeline] fix conflict * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * fix flash attention tests * gemini ignore whisper * fix vit * fix xformers import handle --------- Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com>
2023-08-07 08:41:07 +00:00
)
else:
output_tensor = self.dense(context_layer)
output_tensor = self.dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
outputs = (output_tensor, present)
if output_attentions:
outputs += (attention_probs,)
return outputs
return forward
def get_jit_fused_bloom_mlp_forward():
from transformers.models.bloom.modeling_bloom import BloomMLP
def forward(self: BloomMLP, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
if self.pretraining_tp > 1 and self.slow_but_exact:
intermediate_output = torch.zeros_like(residual)
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
for i in range(self.pretraining_tp):
intermediate_output = intermediate_output + F.linear(
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
[Shardformer] Merge flash attention branch to pipeline branch (#4362) * [shardformer] supported flash attention test dependency (#4158) * [shardformer] fix flash attention utils test (#4180) * [shardformer] opt support flash attention (#4163) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] add performance benchmark of shardformer (#4175) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] benchmark fix * [shardformer] benchmark fix * [shardformer] llama support flash attention (#4185) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] llama support flash attention * [shardformer] llama support flash attention * [shardformer] Move the import statement for xformer outside the forward function. * [shardformer] gpt2 support flash attention. (#4191) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] bloom support flash attention (#4188) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom suport flash attention * [shardformer] add assert to sequence length * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] bert support flash attention. (#4206) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bert support flash attention * [shardformer] t5 support flash attention. (#4216) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 support flash attention * [shardformer] t5 support flash attention * fix typo * fix typo * fix typo * fix typo * fix typo * fix typo * [shardformer] support 'paddedcausal' type of attention mask in Coloattention. (#4215) * added padded causal attn mask type for ColoAttention * [shardformer]t5 flash attention fix (#4239) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 flash attention fix * [shardformer] update gpt2 to use coloattention. (#4234) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 * [shardformer] update opt and llama to use coloattention. (#4226) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt * [shardformer] shardformer support jit fused operator. (#4236) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add type hint to 'self' param of forward * [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] whisper support flash attention (#4301) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] whisper support flash attention * [shardformer] whisper support flash attention * [shardformer]whisper support jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] sam support flash attention (#4316) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] sam support flash attention --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] merge blip2/chatglm (#4321) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] blip2 support flash attention and jit operator (#4325) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] chatglm support flash attention and jit operator (#4330) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] vit support flash attention and jit operator (#4334) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] vit support flash attention and jit operator * [shardformer] vit support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] fix conflict * [pipeline] fix conflict * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * fix flash attention tests * gemini ignore whisper * fix vit * fix xformers import handle --------- Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com>
2023-08-07 08:41:07 +00:00
)
else:
intermediate_output = self.dense_4h_to_h(hidden_states)
output = self.dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
return output
return forward
def get_jit_fused_bloom_gelu_forward():
from transformers.models.bloom.modeling_bloom import BloomGelu
from colossalai.kernel.jit.bias_gelu import GeLUFunction as JitGeLUFunction
def forward(self: BloomGelu, x: torch.Tensor) -> torch.Tensor:
bias = torch.zeros_like(x)
if self.training:
return JitGeLUFunction.apply(x, bias)
else:
return self.bloom_gelu_forward(x, bias)
return forward
def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
from transformers import BloomModel
def forward(
self: BloomModel,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_key_values = tuple([None] * len(self.h))
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape batch_size x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Compute alibi tensor: check build_alibi_tensor documentation
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
else:
attention_mask = attention_mask.to(hidden_states.device)
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
causal_mask = _prepare_4d_causal_attention_mask(
attention_mask,
input_shape=(batch_size, seq_length),
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
inputs_embeds=hidden_states,
past_key_values_length=past_key_values_length,
)
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
causal_mask = causal_mask.bool()
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
hidden_states = split_forward_gather_backward(
hidden_states, dim=1, process_group=shard_config.tensor_parallel_process_group
)
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
alibi,
causal_mask,
layer_past,
head_mask[i],
[shardformer] update transformers (#5583) * flash_attention forward upgrade * llama_model_forward * remove useless comment * update the requirements.txt * add the transformers version requirements * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update_falcon (#5520) * [shardformer] update mistral model (#5511) * [shardformer] update gpt2 (#5502) * [shardformer] update gptj model (#5503) * [shardformer] update opt (#5522) * [shardformer] update t5 model (#5524) * [shardformer] update whisper model (#5529) * [shardformer] update vit model (#5530) * update vit model * remove the output_hidden_states * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * fix conflicts * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * merge with main * merge with main * llama_model_forward * remove useless comment * remove the LATEST VERSION try * [shardformer] update bloom model (#5518) * update bloom model * remove the version restriction * [shardformer] update mistral model (#5511) * [shardformer] update opt (#5522) * [shardformer] update whisper model (#5529) * [shardformer] fix llama modeling * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [shardformer] fix whisper (#5628) * [test] fix llama model test * fix the opt upgrade (#5634) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * Fix shardformer upgrade (#5640) * fix llama model * fix the mistral * fix the shardformer model * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]support pipeline parallelism for mistral. (#5642) * [shardformer] fix attn replacement (#5636) * [shardformer] update flashattention replacement (#5637) * update transformers update transformers fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Support LLaMA-3 CPT and ST (#5619) * support LLaMA-3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Run pre-commit --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [exampe] update llama example (#5626) * [plugin] support dp inside for hybriad parallel * [example] update llama benchmark * [example] update llama benchmark * [example] update llama readme * [example] update llama readme * [example] llama3 (#5631) * release llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [release] llama3 * [test] fix llama test (#5638) * [gemini] fix buffer cast (#5639) * support pp for mistral * fix * fix fix fix * fix --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com>
2024-04-24 14:51:50 +00:00
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
alibi=alibi,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# When sequence parallelism done, gather the output tensor in forward and split it in backward
hidden_states = gather_forward_split_backward(
hidden_states, dim=1, process_group=shard_config.tensor_parallel_process_group
)
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
return forward
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
from transformers import BloomForCausalLM
def forward(
self: BloomForCausalLM,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
past_key_values = None
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = dist_cross_entropy(
labels, lm_logits, shard_config, self.lm_head.out_features, self.config.vocab_size, self.transformer.dtype
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
return forward