from typing import Optional, Tuple
import torch
import torch.nn as nn
from colossalai.shardformer.layer import ColoAttention
def forward_fn():
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
mixed_qkv = self.qkv(hidden_states)
# modified from original code, which is:
# mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute(
# 2, 0, 3, 1, 4
# )
# to:
mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
query_states, key_states, value_states = (
mixed_qkv[0],
mixed_qkv[1],
mixed_qkv[2],
)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
attention_scores = attention_scores * self.scale
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
context_layer = context_layer.reshape(new_context_layer_shape)
output = self.projection(context_layer)
outputs = (output, attention_probs) if output_attentions else (output, None)
return outputs
return forward
def get_blip2_flash_attention_forward():
from transformers.models.blip_2.modeling_blip_2 import Blip2Attention
self: Blip2Attention,
assert head_mask is None, "head_mask is not supported in FlashAttention"
mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
dropout_p = self.dropout.p if self.training else 0.0
context_layer = ColoAttention.attention(
query_states,
key_states,
value_states,
dropout_p=dropout_p,
scale=self.scale,
context_layer = context_layer.permute(0, 2, 1, 3).reshape(bsz, tgt_len, self.embed_dim)
outputs = (output, None)
def get_jit_fused_blip2_QFormer_self_output_forward():
from transformers.models.blip_2.modeling_blip_2 import Blip2QFormerSelfOutput
self: Blip2QFormerSelfOutput,
input_tensor: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout_add(hidden_states, input_tensor, self.dropout.p, self.dropout.training)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
def get_jit_fused_blip2_QFormer_output_forward():
from transformers.models.blip_2.modeling_blip_2 import Blip2QFormerOutput
self: Blip2QFormerOutput,
def get_jit_fused_blip2_mlp_forward():
from transformers.models.blip_2.modeling_blip_2 import Blip2MLP
from colossalai.kernel.jit.bias_gelu import GeLUFunction as JitGeLUFunction
def forward(self: Blip2MLP, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, bias = self.fc1(hidden_states)
hidden_states = JitGeLUFunction.apply(hidden_states, bias)
hidden_states = self.fc2(hidden_states)