mirror of https://github.com/hpcaitech/ColossalAI
77 lines
3.0 KiB
Python
77 lines
3.0 KiB
Python
|
import argparse
|
||
|
|
||
|
import torch
|
||
|
from colossal_llama.dataset.conversation import default_conversation
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
|
||
|
from colossalai.logging import get_dist_logger
|
||
|
|
||
|
logger = get_dist_logger()
|
||
|
|
||
|
|
||
|
def load_model(model_path, device="cuda", **kwargs):
|
||
|
logger.info("Please check whether the tokenizer and model weights are properly stored in the same folder.")
|
||
|
model = AutoModelForCausalLM.from_pretrained(model_path, **kwargs)
|
||
|
model.to(device)
|
||
|
|
||
|
try:
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side="left")
|
||
|
except OSError:
|
||
|
raise ImportError("Tokenizer not found. Please check if the tokenizer exists or the model path is correct.")
|
||
|
|
||
|
return model, tokenizer
|
||
|
|
||
|
|
||
|
@torch.inference_mode()
|
||
|
def generate(args):
|
||
|
model, tokenizer = load_model(model_path=args.model_path, device=args.device)
|
||
|
|
||
|
if args.prompt_style == "sft":
|
||
|
conversation = default_conversation.copy()
|
||
|
conversation.append_message("Human", args.input_txt)
|
||
|
conversation.append_message("Assistant", None)
|
||
|
input_txt = conversation.get_prompt()
|
||
|
else:
|
||
|
BASE_INFERENCE_SUFFIX = "\n\n->\n\n"
|
||
|
input_txt = f"{args.input_txt}{BASE_INFERENCE_SUFFIX}"
|
||
|
|
||
|
inputs = tokenizer(input_txt, return_tensors="pt").to(args.device)
|
||
|
num_input_tokens = inputs["input_ids"].shape[-1]
|
||
|
output = model.generate(
|
||
|
**inputs,
|
||
|
max_new_tokens=args.max_new_tokens,
|
||
|
do_sample=args.do_sample,
|
||
|
temperature=args.temperature,
|
||
|
top_k=args.top_k,
|
||
|
top_p=args.top_p,
|
||
|
num_return_sequences=1,
|
||
|
)
|
||
|
response = tokenizer.decode(output.cpu()[0, num_input_tokens:], skip_special_tokens=True)
|
||
|
logger.info(f"\nHuman: {args.input_txt} \n\nAssistant: \n{response}")
|
||
|
return response
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="Colossal-LLaMA-2 inference Process.")
|
||
|
parser.add_argument(
|
||
|
"--model_path",
|
||
|
type=str,
|
||
|
default="hpcai-tech/Colossal-LLaMA-2-7b-base",
|
||
|
help="HF repo name or local path of the model",
|
||
|
)
|
||
|
parser.add_argument("--device", type=str, default="cuda:0", help="Set the device")
|
||
|
parser.add_argument(
|
||
|
"--max_new_tokens",
|
||
|
type=int,
|
||
|
default=512,
|
||
|
help=" Set maximum numbers of tokens to generate, ignoring the number of tokens in the prompt",
|
||
|
)
|
||
|
parser.add_argument("--do_sample", type=bool, default=True, help="Set whether or not to use sampling")
|
||
|
parser.add_argument("--temperature", type=float, default=0.3, help="Set temperature value")
|
||
|
parser.add_argument("--top_k", type=int, default=50, help="Set top_k value for top-k-filtering")
|
||
|
parser.add_argument("--top_p", type=float, default=0.95, help="Set top_p value for generation")
|
||
|
parser.add_argument("--input_txt", type=str, default="明月松间照,", help="The prompt input to the model")
|
||
|
parser.add_argument("--prompt_style", choices=["sft", "pretrained"], default="sft", help="The style of the prompt")
|
||
|
args = parser.parse_args()
|
||
|
generate(args)
|