|
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
|
|
from colossalai.registry import LR_SCHEDULERS
|
|
|
|
|
|
|
|
|
|
|
|
@LR_SCHEDULERS.register_module
|
|
|
|
class LinearWarmupLR(_LRScheduler):
|
|
|
|
"""Linearly warmup learning rate and then linearly decay
|
|
|
|
|
|
|
|
:param optimizer: Wrapped optimizer
|
|
|
|
:type optimizer: torch.optim.Optimizer
|
|
|
|
:param total_steps: Number of total training steps
|
|
|
|
:type total_steps: int
|
|
|
|
:param warmup_steps: Number of warmup steps, defaults to 0
|
|
|
|
:type warmup_steps: int, optional
|
|
|
|
:param last_epoch: The index of last epoch, defaults to -1
|
|
|
|
:type last_epoch: int, optional
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, last_epoch: int = -1, **kwargs):
|
|
|
|
self.warmup_steps = warmup_steps
|
|
|
|
self.total_steps = total_steps
|
|
|
|
super().__init__(optimizer, last_epoch=last_epoch)
|
|
|
|
|
|
|
|
def get_lr(self):
|
|
|
|
if self.last_epoch < self.warmup_steps:
|
|
|
|
return [(self.last_epoch + 1) / (self.warmup_steps + 1) * lr for lr in self.base_lrs]
|
|
|
|
else:
|
|
|
|
return [(self.total_steps - self.last_epoch) / (self.total_steps - self.warmup_steps) * lr for lr in
|
|
|
|
self.base_lrs]
|