2022-09-20 06:00:04 +00:00
|
|
|
from functools import partial
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
from torch.fx import GraphModule
|
|
|
|
import torch.nn as nn
|
|
|
|
import pytest
|
|
|
|
from colossalai.initialize import launch
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
|
|
from colossalai.logging import disable_existing_loggers
|
|
|
|
from colossalai.auto_parallel.solver.cost_graph import CostGraph
|
|
|
|
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
|
|
|
|
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
|
|
|
|
|
|
|
|
from colossalai.fx.tracer.tracer import ColoTracer
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
from colossalai.fx.passes.experimental.adding_shape_consistency_pass import shape_consistency_pass, solution_annotatation_pass
|
|
|
|
from colossalai.auto_parallel.solver import Solver
|
|
|
|
from colossalai.auto_parallel.solver.options import SolverOptions
|
|
|
|
|
|
|
|
|
|
|
|
class ConvModel(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, c_in, c_out):
|
|
|
|
super().__init__()
|
|
|
|
self.conv = nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def check_apply(rank, world_size, port):
|
|
|
|
disable_existing_loggers()
|
|
|
|
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
input = torch.rand(4, 4, 4, 4).cuda()
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
# [[0, 1]
|
|
|
|
# [2, 3]]
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
|
|
|
entire_shape = torch.Size((4, 4, 8, 8))
|
|
|
|
|
|
|
|
tracer = ColoTracer()
|
|
|
|
model = ConvModel(4, 4).cuda()
|
|
|
|
origin_output = model(input)
|
|
|
|
input_sample = {'x': torch.rand(4, 4, 4, 4).to('meta')}
|
|
|
|
# graph():
|
|
|
|
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
|
|
|
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
|
|
|
|
# return conv
|
|
|
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
|
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
|
|
gm.recompile()
|
|
|
|
solver_options = SolverOptions(fast=True)
|
|
|
|
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
|
|
|
strategies_constructor.build_strategies_and_cost()
|
|
|
|
|
|
|
|
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
|
|
|
cost_graph.simplify_graph()
|
|
|
|
graph_analyser = GraphAnalyser(gm)
|
|
|
|
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
|
|
|
ret = solver.call_solver_serialized_args()
|
|
|
|
solution = list(ret[0])
|
|
|
|
sharding_spec_dict, origin_spec_dict = solution_annotatation_pass(gm, solution, device_mesh)
|
|
|
|
shape_consistency_pass(gm)
|
2022-09-23 03:00:33 +00:00
|
|
|
gm.recompile()
|
2022-09-20 06:00:04 +00:00
|
|
|
nodes = [node for node in gm.graph.nodes]
|
|
|
|
# TODO: wrap the gm to avoid the influence of the user training code
|
|
|
|
output = gm(input, sharding_spec_dict, origin_spec_dict)
|
|
|
|
assert output.equal(origin_output)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skip("for higher testing speed")
|
|
|
|
@pytest.mark.dist
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_apply():
|
|
|
|
world_size = 4
|
|
|
|
run_func = partial(check_apply, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_apply()
|