ColossalAI/tests/test_auto_parallel/test_shape_consistency_pass.py

86 lines
3.2 KiB
Python
Raw Normal View History

from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
from torch.fx import GraphModule
import torch.nn as nn
import pytest
from colossalai.initialize import launch
from colossalai.utils import free_port
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.logging import disable_existing_loggers
from colossalai.auto_parallel.solver.cost_graph import CostGraph
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.passes.experimental.adding_shape_consistency_pass import shape_consistency_pass, solution_annotatation_pass
from colossalai.auto_parallel.solver import Solver
from colossalai.auto_parallel.solver.options import SolverOptions
class ConvModel(nn.Module):
def __init__(self, c_in, c_out):
super().__init__()
self.conv = nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, bias=False)
def forward(self, x):
x = self.conv(x)
return x
def check_apply(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
input = torch.rand(4, 4, 4, 4).cuda()
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
entire_shape = torch.Size((4, 4, 8, 8))
tracer = ColoTracer()
model = ConvModel(4, 4).cuda()
origin_output = model(input)
input_sample = {'x': torch.rand(4, 4, 4, 4).to('meta')}
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
# return conv
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
solver_options = SolverOptions(fast=True)
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
cost_graph.simplify_graph()
graph_analyser = GraphAnalyser(gm)
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
ret = solver.call_solver_serialized_args()
solution = list(ret[0])
sharding_spec_dict, origin_spec_dict = solution_annotatation_pass(gm, solution, device_mesh)
shape_consistency_pass(gm)
gm.recompile()
nodes = [node for node in gm.graph.nodes]
# TODO: wrap the gm to avoid the influence of the user training code
output = gm(input, sharding_spec_dict, origin_spec_dict)
assert output.equal(origin_output)
@pytest.mark.skip("for higher testing speed")
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_apply():
world_size = 4
run_func = partial(check_apply, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_apply()