mirror of https://github.com/hpcaitech/ColossalAI
75 lines
2.4 KiB
Python
75 lines
2.4 KiB
Python
|
from typing import List, Any, Tuple, Dict, Callable, Type, Union
|
||
|
|
||
|
import torch
|
||
|
from torch.futures import Future
|
||
|
|
||
|
from colorama import Back, Style
|
||
|
|
||
|
# config for debug and test
|
||
|
use_color_debug = False
|
||
|
|
||
|
|
||
|
def color_debug(text, prefix=' ', color='blue'):
|
||
|
color = color.upper()
|
||
|
print(getattr(Back, color), prefix, Style.RESET_ALL, text)
|
||
|
|
||
|
|
||
|
def pytree_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = (), map_all: bool = False) -> Any:
|
||
|
"""process object recursively, like pytree
|
||
|
|
||
|
Args:
|
||
|
obj (:class:`Any`): object to process
|
||
|
fn (:class:`Callable`): a function to process subobject in obj
|
||
|
process_types(:class: `type | tuple[type]`): types to determine the type to process
|
||
|
|
||
|
Returns:
|
||
|
:class:`Any`: returns have the same structure of `obj` and type in process_types after map of `fn`
|
||
|
"""
|
||
|
if isinstance(obj, dict):
|
||
|
return {k: pytree_map(obj[k], fn, process_types, map_all) for k in obj}
|
||
|
elif isinstance(obj, tuple):
|
||
|
return tuple(pytree_map(o, fn, process_types, map_all) for o in obj)
|
||
|
elif isinstance(obj, list):
|
||
|
return list(pytree_map(o, fn, process_types, map_all) for o in obj)
|
||
|
elif isinstance(obj, process_types):
|
||
|
return fn(obj)
|
||
|
else:
|
||
|
return fn(obj) if map_all else obj
|
||
|
|
||
|
|
||
|
def tensor_shape_list(obj):
|
||
|
return pytree_map(obj, fn=lambda x: x.shape, process_types=torch.Tensor)
|
||
|
|
||
|
|
||
|
def get_batch_lengths(batch):
|
||
|
lengths = []
|
||
|
pytree_map(batch, fn=lambda x: lengths.append(len(x)), process_types=torch.Tensor)
|
||
|
return lengths
|
||
|
|
||
|
|
||
|
def split_batch(batch: Any, start, stop, device: str):
|
||
|
if device == 'cuda':
|
||
|
fn = lambda x: x[start:stop].cuda()
|
||
|
else:
|
||
|
fn = lambda x: x[start:stop]
|
||
|
return pytree_map(batch, fn=fn, process_types=torch.Tensor)
|
||
|
|
||
|
|
||
|
def type_detail(obj):
|
||
|
return pytree_map(obj, lambda x: type(x), map_all=True)
|
||
|
|
||
|
|
||
|
def get_real_args_kwargs(args_or_kwargs):
|
||
|
args_or_kwargs = pytree_map(args_or_kwargs, fn=lambda x: x.wait(), process_types=Future)
|
||
|
# TODO : combine producer and consumer
|
||
|
# by default, merge all args in the output args or kwargs
|
||
|
if args_or_kwargs is not None:
|
||
|
if isinstance(args_or_kwargs, dict):
|
||
|
pass
|
||
|
else:
|
||
|
flatten_args = []
|
||
|
pytree_map(args_or_kwargs, fn=lambda x: flatten_args.append(x), map_all=True)
|
||
|
args_or_kwargs = flatten_args
|
||
|
|
||
|
return args_or_kwargs
|