ColossalAI/tests/kit/model_zoo/transformers/t5.py

47 lines
1.7 KiB
Python
Raw Normal View History

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence T5
# ===============================
BATCH_SIZE = 2
SEQ_LENGTH = 16
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
decoder_input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
return dict(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
def data_gen_for_encoder_only():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
return dict(input_ids=input_ids)
output_transform_fn = lambda x: x
config = transformers.T5Config(d_model=128, num_layers=2)
# register the following models
# transformers.T5Model,
# transformers.T5ForConditionalGeneration,
# transformers.T5EncoderModel,
model_zoo.register(name='transformers_t5',
model_fn=lambda: transformers.T5Model(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_t5_for_conditional_generation',
model_fn=lambda: transformers.T5ForConditionalGeneration(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_t5_encoder_model',
model_fn=lambda: transformers.T5EncoderModel(config),
data_gen_fn=data_gen_for_encoder_only,
output_transform_fn=output_transform_fn,
model_attribute=ModelAttribute(has_control_flow=True))