mirror of https://github.com/hpcaitech/ColossalAI
74 lines
2.7 KiB
Python
74 lines
2.7 KiB
Python
|
from functools import partial
|
||
|
|
||
|
import diffusers
|
||
|
import torch
|
||
|
import transformers
|
||
|
|
||
|
from ..registry import ModelAttribute, model_zoo
|
||
|
|
||
|
BATCH_SIZE = 2
|
||
|
SEQ_LENGTH = 5
|
||
|
HEIGHT = 224
|
||
|
WIDTH = 224
|
||
|
IN_CHANNELS = 3
|
||
|
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
|
||
|
TIME_STEP = 3
|
||
|
|
||
|
data_vae_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32))
|
||
|
data_unet_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32), timestep=3)
|
||
|
|
||
|
identity_output = lambda x: x
|
||
|
|
||
|
|
||
|
def data_clip_model():
|
||
|
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||
|
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||
|
position_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||
|
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
|
||
|
return dict(input_ids=input_ids,
|
||
|
pixel_values=pixel_values,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids)
|
||
|
|
||
|
|
||
|
def data_clip_text():
|
||
|
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||
|
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||
|
|
||
|
|
||
|
def data_clip_vision():
|
||
|
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
|
||
|
return dict(pixel_values=pixel_values)
|
||
|
|
||
|
|
||
|
model_zoo.register(name='diffusers_auto_encoder_kl',
|
||
|
model_fn=diffusers.AutoencoderKL,
|
||
|
data_gen_fn=data_vae_fn,
|
||
|
output_transform_fn=identity_output)
|
||
|
|
||
|
model_zoo.register(name='diffusers_vq_model',
|
||
|
model_fn=diffusers.VQModel,
|
||
|
data_gen_fn=data_vae_fn,
|
||
|
output_transform_fn=identity_output)
|
||
|
|
||
|
model_zoo.register(name='diffusers_clip_model',
|
||
|
model_fn=partial(transformers.CLIPModel, config=transformers.CLIPConfig()),
|
||
|
data_gen_fn=data_clip_model,
|
||
|
output_transform_fn=identity_output)
|
||
|
|
||
|
model_zoo.register(name='diffusers_clip_text_model',
|
||
|
model_fn=partial(transformers.CLIPTextModel, config=transformers.CLIPTextConfig()),
|
||
|
data_gen_fn=data_clip_text,
|
||
|
output_transform_fn=identity_output)
|
||
|
|
||
|
model_zoo.register(name='diffusers_clip_vision_model',
|
||
|
model_fn=partial(transformers.CLIPVisionModel, config=transformers.CLIPVisionConfig()),
|
||
|
data_gen_fn=data_clip_vision,
|
||
|
output_transform_fn=identity_output)
|
||
|
|
||
|
model_zoo.register(name='diffusers_unet2d_model',
|
||
|
model_fn=diffusers.UNet2DModel,
|
||
|
data_gen_fn=data_unet_fn,
|
||
|
output_transform_fn=identity_output)
|