mirror of https://github.com/hpcaitech/ColossalAI
100 lines
2.9 KiB
Python
100 lines
2.9 KiB
Python
|
from collections import OrderedDict
|
||
|
from functools import partial
|
||
|
|
||
|
import torch
|
||
|
from torch import Tensor
|
||
|
|
||
|
from colossalai.constants import INPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_GROUP_3D, OUTPUT_X_WEIGHT_3D, WEIGHT_GROUP_3D
|
||
|
from colossalai.core import global_context as gpc
|
||
|
from colossalai.global_variables import tensor_parallel_env as env
|
||
|
|
||
|
|
||
|
def get_depth_from_env() -> int:
|
||
|
try:
|
||
|
depth = env.depth_3d
|
||
|
assert depth > 0, 'DEPTH must be greater than zero'
|
||
|
return depth
|
||
|
|
||
|
except KeyError as e:
|
||
|
raise EnvironmentError('DEPTH is not found in the current environment, '
|
||
|
'please make sure that you have used the correct process group initializer')
|
||
|
|
||
|
|
||
|
def get_parallel_mode_from_env(group):
|
||
|
assert group in [INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_X_WEIGHT_3D], \
|
||
|
f'{group} is not valid for 3D tensor parallelism.'
|
||
|
return getattr(env, group)
|
||
|
|
||
|
|
||
|
def swap_in_out_group():
|
||
|
env.input_group_3d, env.output_group_3d = env.output_group_3d, env.input_group_3d
|
||
|
env.input_x_weight_group_3d, env.output_x_weight_group_3d = (
|
||
|
env.output_x_weight_group_3d,
|
||
|
env.input_x_weight_group_3d,
|
||
|
)
|
||
|
|
||
|
|
||
|
def dbg_check_shape(tensor: Tensor, shape: tuple):
|
||
|
rank = gpc.get_global_rank()
|
||
|
if rank == 0:
|
||
|
print(tensor.shape)
|
||
|
assert tensor.shape == shape, \
|
||
|
'{} does not match {}'.format(tensor.shape, shape)
|
||
|
|
||
|
|
||
|
class AsyncGradientBucket(object):
|
||
|
|
||
|
def __init__(self):
|
||
|
self.bucket = OrderedDict()
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.bucket)
|
||
|
|
||
|
def push(self, async_op, grad_tensor, param_id):
|
||
|
self.bucket[param_id] = tuple((async_op, grad_tensor))
|
||
|
return torch.zeros_like(grad_tensor, dtype=grad_tensor.dtype, device=grad_tensor.device)
|
||
|
|
||
|
def pop(self, param_id):
|
||
|
grad = None
|
||
|
if param_id in self.bucket:
|
||
|
op, grad = self.bucket.pop(param_id)
|
||
|
if op is not None:
|
||
|
op.wait()
|
||
|
return grad
|
||
|
|
||
|
def synchronize(self, params):
|
||
|
for p in params:
|
||
|
i = id(p)
|
||
|
if i in self.bucket:
|
||
|
op, grad = self.bucket.pop(i)
|
||
|
if op is not None:
|
||
|
op.wait()
|
||
|
p.grad.add_(grad)
|
||
|
|
||
|
|
||
|
_async_grad_bucket = AsyncGradientBucket()
|
||
|
|
||
|
|
||
|
def push_async_grad(op, grad, param_id):
|
||
|
return _async_grad_bucket.push(op, grad, param_id)
|
||
|
|
||
|
|
||
|
def pop_async_grad(param_id):
|
||
|
return _async_grad_bucket.pop(param_id)
|
||
|
|
||
|
|
||
|
def _async_grad_hook(grad, param_id):
|
||
|
grad.add_(pop_async_grad(param_id))
|
||
|
return grad
|
||
|
|
||
|
|
||
|
def register_async_grad_hook(param):
|
||
|
param.register_hook(partial(_async_grad_hook, param_id=id(param)))
|
||
|
|
||
|
|
||
|
def synchronize(params=list()):
|
||
|
_async_grad_bucket.synchronize(params)
|
||
|
torch.cuda.default_stream().synchronize()
|
||
|
if len(_async_grad_bucket) > 0:
|
||
|
raise RuntimeError(f"{len(_async_grad_bucket)} asynchronous gradient(s) not collected.")
|