mirror of https://github.com/hpcaitech/ColossalAI
80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import inspect
|
||
|
|
||
|
from colossalai.legacy.registry import *
|
||
|
|
||
|
|
||
|
def build_from_config(module, config: dict):
|
||
|
"""Returns an object of :class:`module` constructed from `config`.
|
||
|
|
||
|
Args:
|
||
|
module: A python or user-defined class
|
||
|
config: A python dict containing information used in the construction of the return object
|
||
|
|
||
|
Returns: An ``object`` of interest
|
||
|
|
||
|
Raises:
|
||
|
AssertionError: Raises an AssertionError if `module` is not a class
|
||
|
|
||
|
"""
|
||
|
assert inspect.isclass(module), 'module must be a class'
|
||
|
return module(**config)
|
||
|
|
||
|
|
||
|
def build_from_registry(config, registry: Registry):
|
||
|
r"""Returns an object constructed from `config`, the type of the object
|
||
|
is specified by `registry`.
|
||
|
|
||
|
Note:
|
||
|
the `config` is used to construct the return object such as `LAYERS`, `OPTIMIZERS`
|
||
|
and other support types in `registry`. The `config` should contain
|
||
|
all required parameters of corresponding object. The details of support
|
||
|
types in `registry` and the `mod_type` in `config` could be found in
|
||
|
`registry <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/registry/__init__.py>`_.
|
||
|
|
||
|
Args:
|
||
|
config (dict or :class:`colossalai.context.colossalai.context.Config`): information
|
||
|
used in the construction of the return object.
|
||
|
registry (:class:`Registry`): A registry specifying the type of the return object
|
||
|
|
||
|
Returns:
|
||
|
A Python object specified by `registry`.
|
||
|
|
||
|
Raises:
|
||
|
Exception: Raises an Exception if an error occurred when building from registry.
|
||
|
"""
|
||
|
config_ = config.copy() # keep the original config untouched
|
||
|
assert isinstance(registry, Registry), f'Expected type Registry but got {type(registry)}'
|
||
|
|
||
|
mod_type = config_.pop('type')
|
||
|
assert registry.has(mod_type), f'{mod_type} is not found in registry {registry.name}'
|
||
|
try:
|
||
|
obj = registry.get_module(mod_type)(**config_)
|
||
|
except Exception as e:
|
||
|
print(f'An error occurred when building {mod_type} from registry {registry.name}', flush=True)
|
||
|
raise e
|
||
|
|
||
|
return obj
|
||
|
|
||
|
|
||
|
def build_gradient_handler(config, model, optimizer):
|
||
|
"""Returns a gradient handler object of :class:`BaseGradientHandler` constructed from `config`,
|
||
|
`model` and `optimizer`.
|
||
|
|
||
|
Args:
|
||
|
config (dict or :class:`colossalai.context.Config`): A python dict or
|
||
|
a :class:`colossalai.context.Config` object containing information
|
||
|
used in the construction of the ``GRADIENT_HANDLER``.
|
||
|
model (:class:`nn.Module`): A model containing parameters for the gradient handler
|
||
|
optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing parameters for the gradient handler
|
||
|
|
||
|
Returns:
|
||
|
An object of :class:`colossalai.legacy.engine.BaseGradientHandler`
|
||
|
"""
|
||
|
config_ = config.copy()
|
||
|
config_['model'] = model
|
||
|
config_['optimizer'] = optimizer
|
||
|
return build_from_registry(config_, GRADIENT_HANDLER)
|