ColossalAI/tests/test_tensor/_utils/_util.py

58 lines
1.7 KiB
Python
Raw Normal View History

import os
import random
import numpy as np
2022-04-24 05:43:12 +00:00
import torch
import torch.distributed as dist
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
2022-04-24 05:43:12 +00:00
2022-04-24 05:43:12 +00:00
def check_equal(A, B):
assert torch.allclose(A, B, rtol=1e-3, atol=1e-1) == True
2022-04-24 05:43:12 +00:00
def replace_parameter_add_grad(layer, weight=None, bias=None):
if weight is not None:
delattr(layer, 'weight')
setattr(layer, 'weight', weight)
layer.weight.requires_grad = True
if bias is not None:
delattr(layer, 'bias')
setattr(layer, 'bias', bias)
layer.bias.requires_grad = True
2022-04-24 05:43:12 +00:00
def broadcast_tensor_chunk(tensor, chunk_size=1, local_rank=0):
dist.broadcast(tensor, src=0)
tensor_chunk = torch.chunk(tensor, chunk_size, dim=-1)[local_rank]
return tensor_chunk.clone()
def tensor_equal(A, B):
return torch.allclose(A, B, rtol=1e-3, atol=1e-1)
def tensor_shard_equal(tensor: torch.Tensor, shard: torch.Tensor):
assert tensor.ndim == shard.ndim
if tensor.shape == shard.shape:
return tensor_equal(tensor, shard)
else:
dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape))
if dims_not_eq.numel() == 1:
# 1D shard
dim = dims_not_eq.item()
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
return tensor_equal(tensor.chunk(world_size, dim)[rank], shard)
else:
raise NotImplementedError