You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/auto_parallel/checkpoint/operation.py

242 lines
7.1 KiB

import math
from abc import ABC
from typing import List
from torch.utils._pytree import tree_map
class Chain:
def __init__(self,
ftime: List[float],
btime: List[float],
x: List[int],
xbar: List[int],
ftmp: List[int],
btmp: List[int],
check_consistency: bool = True):
"""The chain is a basic linearized structure for solving the dynamic programming problem for activation checkpoint.
See paper https://hal.inria.fr/hal-02352969 for details.
Args:
ftime (List[float]): The forward time of each node.
btime (List[float]): The backward time of each node.
x (List[int]): The forward memory of each node (if save_output). Same as `a` in the paper.
xbar (List[int]): The forward memory of each node (if save_all). Same as `a_bar` in the paper.
ftmp (List[int]): The temporary forward memory of each node.
btmp (List[int]): The temporary backward memory of each node, can be used to control memory budget.
check_consistency (bool, optional): Check the lengths consistency for the `Chain`. Defaults to True.
"""
self.ftime = ftime
self.btime = btime
self.x = x
self.xbar = xbar
self.ftmp = ftmp
self.btmp = btmp
self.length = len(ftime)
if check_consistency and not self.check_lengths():
raise AttributeError("In Chain, input lists do not have consistent lengths")
def check_lengths(self):
return ((len(self.ftime) == self.length) and (len(self.btime) == self.length + 1)
and (len(self.x) == self.length + 1) and (len(self.ftmp) == self.length)
and (len(self.btmp) == self.length + 1) and (len(self.xbar) == self.length + 1))
def __repr__(self):
chain_list = []
for i in range(self.length):
chain_list.append((self.ftime[i], self.btime[i], self.x[i], self.xbar[i], self.ftmp[i], self.btmp[i]))
i = self.length
chain_list.append((None, self.btime[i], self.x[i], self.xbar[i], None, self.btmp[i]))
return chain_list.__repr__()
def discretize_all(self, unit: int):
"""Discretize the chain into a list of chains according to unit size."""
discretizer = lambda val: math.ceil(val / unit)
self.x = tree_map(discretizer, self.x)
self.xbar = tree_map(discretizer, self.xbar)
self.ftmp = tree_map(discretizer, self.ftmp)
self.btmp = tree_map(discretizer, self.btmp)
class Operation(ABC):
name = "Op"
def __repr__(self) -> str:
return f"{self.name}_{self.index}"
def shift(self, value):
if type(self.index) is tuple:
self.index = tuple(x + value for x in self.index)
else:
self.index += value
class Forward(Operation):
name = "F"
def __init__(self, index):
self.index = index
def cost(self, chain: Chain):
if chain is not None:
return chain.ftime[self.index]
else:
return 1
class ForwardEnable(Forward):
name = "Fe"
class ForwardNograd(Forward):
name = "Fn"
class ForwardCheck(Forward):
name = "CF"
class Forwards(Operation):
def __init__(self, start, end):
self.index = (start, end)
def __repr__(self):
return "F_{i}->{j}".format(i=self.index[0], j=self.index[1])
def cost(self, chain: Chain):
if chain is not None:
return sum(chain.ftime[self.index[0]:self.index[1] + 1])
else:
return (self.index[1] - self.index[0] + 1)
def isForward(op):
return type(op) is Forward or type(op) is Forwards
class Backward(Operation):
name = "B"
def __init__(self, index):
self.index = index
def cost(self, chain: Chain):
if chain is not None:
return chain.btime[self.index]
else:
return 1
class Loss(Operation):
def __init__(self):
pass
def __repr__(self):
return "L"
def cost(self, chain):
return 0
class MemoryAccess(Operation):
name = "MA"
def __init__(self, index):
self.index = index
def cost(self, chain: Chain):
return 0
class WriteMemory(MemoryAccess):
name = "WM"
class ReadMemory(MemoryAccess):
name = "RM"
class DiscardMemory(MemoryAccess):
name = "DM"
class Function:
def __init__(self, name, *args):
self.name = name
self.args = args
self.str_args = ','.join(str(v) for v in self.args)
def __repr__(self):
return "{n}({args})".format(n=self.name, args=self.str_args)
class Sequence:
def __init__(self, function):
self.sequence = [] #List of Operation and Sequence
self.function = function #Description the function (name and parameters)
def __repr__(self):
return repr(self.list_operations())
def list_operations(self):
op_list = []
for x in self.sequence:
if isinstance(x, Operation):
op_list.append(x)
else:
assert isinstance(x, Sequence)
op_list += x.list_operations()
return op_list
def insert(self, operation):
self.sequence.append(operation)
def remove(self, operation_index):
del self.sequence[operation_index]
def insert_sequence(self, sequence):
self.sequence.append(sequence)
def shift(self, value):
for x in self.sequence:
x.shift(value)
return self
def remove_useless_write(self):
if self.sequence:
if isinstance(self.sequence[0], WriteMemory):
self.remove(0)
return self
def get_makespan(self, chain):
return sum(op.cost(chain) for op in self.list_operations())
def without_suffix(self):
ops = self.list_operations()
end_of_first_phase = [i for i in range(len(ops)) if type(ops[i]) is Loss][0]
try:
last_idx = max(i for i in range(end_of_first_phase) if not type(ops[i]) is ForwardEnable)
except ValueError:
last_idx = -1
if last_idx == end_of_first_phase - 1:
return (self, None)
chain_length = ops[end_of_first_phase -
1].index ## Some assumption here about the sequence (finishes with Forward_L
start_of_fwd_enable_chain = ops[last_idx + 1].index ## And starts with B_L), but should be fine in practice
result = Sequence(Function("Strip", self.function.name, *self.function.args, start_of_fwd_enable_chain))
for i in range(last_idx + 1):
result.insert(ops[i])
result.insert(Loss())
for i in range(chain_length, start_of_fwd_enable_chain - 1, -1):
position = end_of_first_phase + 1 + (chain_length - i)
assert type(ops[position]) is Backward
assert ops[position].index == i
for i in range(end_of_first_phase + 1 + 1 + chain_length - start_of_fwd_enable_chain, len(ops)):
result.insert(ops[i])
return (result, start_of_fwd_enable_chain)