ColossalAI/colossalai/auto_parallel/passes/meta_info_prop.py

166 lines
5.9 KiB
Python
Raw Normal View History

import uuid
from dataclasses import asdict
from typing import List
import torch
import torch.fx
from torch.fx import GraphModule
from torch.fx.node import Node
from colossalai.auto_parallel.meta_profiler import MetaInfo
from colossalai.auto_parallel.passes.constants import OUTPUT_SAVED_MOD, OUTPUT_SAVED_OPS
from colossalai.fx._compatibility import compatibility
from colossalai.fx.profiler import GraphInfo
def _normalize_tuple(x):
if not isinstance(x, tuple):
return (x,)
return x
@compatibility(is_backward_compatible=False)
class MetaInfoProp:
def __init__(self, module: GraphModule) -> None:
self.module = module
self.func_dict = {
'placeholder': self.placeholder_handler,
'get_attr': self.get_attr_handler,
'output': self.output_handler,
'call_function': self.node_handler,
'call_module': self.node_handler,
'call_method': self.node_handler,
}
def _set_data_ptr(self, x):
"""
Set uuid to tensor
"""
if isinstance(x, torch.Tensor):
if not x.data_ptr():
data_ptr = uuid.uuid4()
x.data_ptr = lambda: data_ptr
def _is_inplace(self, node: Node):
"""
Check if the node is inplace operation.
"""
if node.op == 'call_module':
return node.graph.owning_module.get_submodule(node.target).__class__ in OUTPUT_SAVED_MOD
elif node.op == "call_function":
return node.target in OUTPUT_SAVED_OPS
return False
def run(self) -> GraphModule:
"""
Run the meta information propagation pass on the module.
"""
for node in self.module.graph.nodes:
node: Node
self.func_dict[node.op](node)
@compatibility(is_backward_compatible=False)
def placeholder_handler(self, node: Node) -> None:
"""
Handle the placeholder node.
"""
graph_info = GraphInfo()
out = _normalize_tuple(getattr(node, '_meta_data', None))
graph_info.fwd_out = list(out) if out[0] is not None else []
node.meta = {**asdict(graph_info)}
@compatibility(is_backward_compatible=False)
def get_attr_handler(self, node: Node) -> None:
"""
Handle the get_attr node.
"""
graph_info = GraphInfo()
node.meta = {**asdict(graph_info)}
@compatibility(is_backward_compatible=False)
def output_handler(self, node: Node) -> None:
"""
Handle the output node.
"""
graph_info = GraphInfo()
output_tensors = []
for par in node._input_nodes:
if par.meta:
output_tensors += par.meta["fwd_out"]
graph_info.fwd_in = output_tensors
node.meta = {**asdict(graph_info)}
@compatibility(is_backward_compatible=False)
def node_handler(self, node: Node) -> None:
"""
Handle other kind of nodes
"""
assert hasattr(node, 'best_metainfo'), f"Cannot find best_metainfo in node {node}, {node.op}"
graph_info = GraphInfo()
meta_info = node.best_metainfo
meta_info: MetaInfo
# set data_ptr for input_tensor in MetaInfo class
input_tensors: List[torch.Tensor] = meta_info.fwd_in
buffer_tensors: List[torch.Tensor] = meta_info.fwd_buffer
output_tensors: List[torch.Tensor] = meta_info.fwd_out
if self._is_inplace(node):
# inplace operation will not create new tensor, and it only has one parent node
# TODO: Verify this observation
# set data_ptr for input_tensor, buffer_tensor and output_tensor of current node
parent_node = list(node._input_nodes.keys())[0]
parent_tensor = parent_node.meta.get("fwd_out")[0]
parent_tensor: torch.Tensor
for tensor in input_tensors:
tensor.data_ptr = parent_tensor.data_ptr
for tensor in buffer_tensors:
tensor.data_ptr = parent_tensor.data_ptr
for tensor in output_tensors:
tensor.data_ptr = parent_tensor.data_ptr
else:
for par in node._input_nodes:
# set data_ptr for the input_tensor of current node from the output_tensor of its parent node
for tensor in par.meta.get("fwd_out", []):
tensor: torch.Tensor
target_input_tensor = next(
(x for x in input_tensors if not x.data_ptr() and x.shape == tensor.shape), None)
if target_input_tensor is not None:
target_input_tensor.data_ptr = tensor.data_ptr
# set data_ptr for tensor in input_tensor that is not set
for tensor in input_tensors:
if not tensor.data_ptr():
self._set_data_ptr(tensor)
# set data_ptr for buffer_tensor
for tensor in buffer_tensors:
self._set_data_ptr(tensor)
# set data_ptr for output_tensor
for tensor in output_tensors:
self._set_data_ptr(tensor)
# attach them to graph_info
graph_info.fwd_in = input_tensors
graph_info.fwd_tmp = buffer_tensors
graph_info.fwd_out = output_tensors
# fetch other memory informations
memory_cost = meta_info.memory_cost
graph_info.fwd_mem_tmp = memory_cost.fwd.temp
graph_info.fwd_mem_out = memory_cost.fwd.activation
graph_info.bwd_mem_tmp = memory_cost.bwd.temp
graph_info.bwd_mem_out = memory_cost.bwd.activation
# fetch flop information
# here we use fwd_time and bwd_time to deal with the case that
# communication cost is a float
compute_cost = meta_info.compute_cost
graph_info.fwd_time = compute_cost.fwd
graph_info.bwd_time = compute_cost.bwd
node.meta = {**asdict(graph_info)}