ColossalAI/colossalai/device/alpha_beta_profiler.py

200 lines
7.9 KiB
Python
Raw Normal View History

import math
import time
from typing import Dict, List, Tuple
import torch
import torch.distributed as dist
from colossalai.logging import get_dist_logger
GB = int((1 << 30))
BYTE = 4
FRAMEWORK_LATENCY = 0
class AlphaBetaProfiler:
'''
Profile alpha and beta value for a given device list.
Usage:
# Note: the environment of execution is supposed to be
# multi-process with multi-gpu in mpi style.
>>> physical_devices = [0, 1, 4, 5]
>>> ab_profiler = AlphaBetaProfiler(physical_devices)
>>> ab_dict = profiler.profile_ab()
>>> print(ab_dict)
{(0, 1): (1.9641406834125518e-05, 4.74049549614719e-12), (0, 4): (1.9506998360157013e-05, 6.97421973297474e-11), (0, 5): (2.293858677148819e-05, 7.129930361393644e-11),
(1, 4): (1.9010603427886962e-05, 7.077968863788975e-11), (1, 5): (1.9807778298854827e-05, 6.928845708992215e-11), (4, 5): (1.8681809306144713e-05, 4.7522367291330524e-12),
(1, 0): (1.9641406834125518e-05, 4.74049549614719e-12), (4, 0): (1.9506998360157013e-05, 6.97421973297474e-11), (5, 0): (2.293858677148819e-05, 7.129930361393644e-11),
(4, 1): (1.9010603427886962e-05, 7.077968863788975e-11), (5, 1): (1.9807778298854827e-05, 6.928845708992215e-11), (5, 4): (1.8681809306144713e-05, 4.7522367291330524e-12)}
'''
def __init__(self,
physical_devices: List[int],
ctype: str = 'a',
warmup: int = 5,
repeat: int = 25,
latency_iters: int = 5):
'''
Args:
physical_devices: A list of device id, each element inside it is the global rank of that device.
ctype: 'a' for all-reduce, 'b' for broadcast.
warmup: Number of warmup iterations.
repeat: Number of iterations to measure.
latency_iters: Number of iterations to measure latency.
'''
self.physical_devices = physical_devices
self.ctype = ctype
self.world_size = len(physical_devices)
self.warmup = warmup
self.repeat = repeat
self.latency_iters = latency_iters
self.process_group_dict = None
self._init_profiling()
def _init_profiling(self):
# Create process group list based on its global rank
process_group_list = []
for f_index in range(self.world_size - 1):
for b_index in range(f_index + 1, self.world_size):
process_group_list.append((self.physical_devices[f_index], self.physical_devices[b_index]))
# Create process group dict which maps process group to its handler
process_group_dict = {}
for process_group in process_group_list:
pg_handler = dist.new_group(process_group)
process_group_dict[process_group] = pg_handler
self.process_group_dict = process_group_dict
def _profile(self, process_group, pg_handler, nbytes):
logger = get_dist_logger()
rank = dist.get_rank()
src_device_num = process_group[0]
world_size = len(process_group)
device = torch.cuda.current_device()
buf = torch.randn(nbytes // 4).to(device)
torch.cuda.synchronize()
# warmup
for _ in range(self.warmup):
if self.ctype == "a":
dist.all_reduce(buf, op=dist.ReduceOp.SUM, group=pg_handler)
elif self.ctype == "b":
dist.broadcast(buf, src=src_device_num, group=pg_handler)
torch.cuda.synchronize()
dist.barrier(group=pg_handler)
begin = time.perf_counter()
for _ in range(self.repeat):
if self.ctype == "a":
dist.all_reduce(buf, op=dist.ReduceOp.SUM, group=pg_handler)
elif self.ctype == "b":
dist.broadcast(buf, src=src_device_num, group=pg_handler)
torch.cuda.synchronize()
end = time.perf_counter()
dist.barrier(group=pg_handler)
if rank == src_device_num:
avg_time_s = (end - begin) / self.repeat - FRAMEWORK_LATENCY
alg_band = nbytes / avg_time_s
if self.ctype == "a":
# convert the bandwidth of all-reduce algorithm to the bandwidth of the hardware.
bus_band = 2 * (world_size - 1) / world_size * alg_band
bus_band = alg_band
elif self.ctype == "b":
bus_band = alg_band
logger.info(
f"GPU:{rank}, Bytes: {nbytes} B,Time: {round(avg_time_s * 1e6,2)} us, Bus bandwidth: {round(bus_band / GB,2)} GB/s"
)
return (avg_time_s, alg_band)
else:
# Just a placeholder
return (None, None)
def profile_latency(self, process_group, pg_handler):
'''
This function is used to profile the latency of the given process group with a series of bytes.
Args:
process_group: A tuple of global rank of the process group.
pg_handler: The handler of the process group.
Returns:
latency: None if the latency is not measured, otherwise the median of the latency_list.
'''
latency_list = []
for i in range(self.latency_iters):
nbytes = int(BYTE << i)
(t, _) = self._profile(process_group, pg_handler, nbytes)
latency_list.append(t)
if latency_list[0] is None:
latency = None
else:
median_index = math.floor(self.latency_iters / 2)
latency = latency_list[median_index]
return latency
def profile_bandwidth(self, process_group, pg_handler, maxbytes):
'''
This function is used to profile the bandwidth of the given process group.
Args:
process_group: A tuple of global rank of the process group.
pg_handler: The handler of the process group.
'''
(_, bandwidth) = self._profile(process_group, pg_handler, maxbytes)
return bandwidth
def profile_ab(self):
'''
This method is used to profiling the alpha and beta value for a given device list.
Returns:
alpha_beta_dict: A dict which maps process group to its alpha and beta value.
'''
alpha_beta_dict: Dict[Tuple[int], Tuple[float]] = {}
rank = dist.get_rank()
def get_max_nbytes(process_group: Tuple[int], pg_handler: dist.ProcessGroup):
assert rank in process_group
device = torch.cuda.current_device()
rank_max_nbytes = torch.cuda.mem_get_info(device)[0]
rank_max_nbytes = torch.tensor(rank_max_nbytes, device=device)
dist.all_reduce(rank_max_nbytes, op=dist.ReduceOp.MIN, group=pg_handler)
max_nbytes = min(int(1 * GB), int(GB << int(math.log2(rank_max_nbytes.item() / GB))))
return max_nbytes
for process_group, pg_handler in self.process_group_dict.items():
if rank not in process_group:
max_nbytes = None
alpha = None
bandwidth = None
else:
max_nbytes = get_max_nbytes(process_group, pg_handler)
alpha = self.profile_latency(process_group, pg_handler)
bandwidth = self.profile_bandwidth(process_group, pg_handler, maxbytes=max_nbytes)
if bandwidth is None:
beta = None
else:
beta = 1 / bandwidth
broadcast_list = [alpha, beta]
dist.broadcast_object_list(broadcast_list, src=process_group[0])
alpha_beta_dict[process_group] = tuple(broadcast_list)
# add symmetry pair to the apha_beta_dict
symmetry_ab_dict = {}
for process_group, alpha_beta_pair in alpha_beta_dict.items():
symmetry_process_group = (process_group[1], process_group[0])
symmetry_ab_dict[symmetry_process_group] = alpha_beta_pair
alpha_beta_dict.update(symmetry_ab_dict)
return alpha_beta_dict