mirror of https://github.com/hpcaitech/ColossalAI
324 lines
11 KiB
Python
324 lines
11 KiB
Python
|
# meta patch from https://github.com/pytorch/pytorch/blob/master/torch/_meta_registrations.py
|
||
|
# should be activated for PyTorch version 1.12.0 and below
|
||
|
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
import torch
|
||
|
from torch.utils._pytree import tree_map
|
||
|
|
||
|
aten = torch.ops.aten
|
||
|
|
||
|
meta_lib = torch.library.Library("aten", "IMPL", "Meta")
|
||
|
|
||
|
meta_table = {}
|
||
|
|
||
|
|
||
|
def register_meta(op, register_dispatcher=True):
|
||
|
|
||
|
def wrapper(f):
|
||
|
|
||
|
def add_func(op):
|
||
|
meta_table[op] = f
|
||
|
if register_dispatcher:
|
||
|
name = (op.__name__ if op._overloadname != "default" else op.overloadpacket.__name__)
|
||
|
try:
|
||
|
meta_lib.impl(name, f)
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
tree_map(add_func, op)
|
||
|
return f
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
|
||
|
# https://github.com/pytorch/pytorch/pull/79834
|
||
|
@register_meta(aten.convolution.default)
|
||
|
def meta_conv(
|
||
|
input_tensor: torch.Tensor,
|
||
|
weight: torch.Tensor,
|
||
|
bias: torch.Tensor,
|
||
|
stride: List[int],
|
||
|
padding: List[int],
|
||
|
dilation: List[int],
|
||
|
is_transposed: bool,
|
||
|
output_padding: List[int],
|
||
|
groups: int,
|
||
|
):
|
||
|
|
||
|
def _formula(ln: int, p: int, d: int, k: int, s: int) -> int:
|
||
|
"""
|
||
|
Formula to apply to calculate the length of some dimension of the output
|
||
|
See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
|
||
|
Args:
|
||
|
ln: length of the dimension
|
||
|
p: padding in that dim
|
||
|
d: dilation in that dim
|
||
|
k: kernel size in that dim
|
||
|
s: stride in that dim
|
||
|
Returns:
|
||
|
The output length
|
||
|
"""
|
||
|
return (ln + 2 * p - d * (k - 1) - 1) // s + 1
|
||
|
|
||
|
def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int:
|
||
|
"""
|
||
|
Formula to apply to calculate the length of some dimension of the output
|
||
|
if transposed convolution is used.
|
||
|
See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
|
||
|
Args:
|
||
|
ln: length of the dimension
|
||
|
p: padding in that dim
|
||
|
d: dilation in that dim
|
||
|
k: kernel size in that dim
|
||
|
s: stride in that dim
|
||
|
op: output padding in that dim
|
||
|
Returns:
|
||
|
The output length
|
||
|
"""
|
||
|
return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1
|
||
|
|
||
|
def calc_conv_nd_return_shape(
|
||
|
dims: torch.Size,
|
||
|
kernel_size: torch.Size,
|
||
|
stride: Union[List[int], int],
|
||
|
padding: Union[List[int], int],
|
||
|
dilation: Union[List[int], int],
|
||
|
output_padding: Optional[Union[List[int], int]] = None,
|
||
|
):
|
||
|
ret_shape = []
|
||
|
if isinstance(stride, int):
|
||
|
stride = [stride] * len(dims)
|
||
|
elif len(stride) == 1:
|
||
|
stride = [stride[0]] * len(dims)
|
||
|
|
||
|
if isinstance(padding, int):
|
||
|
padding = [padding] * len(dims)
|
||
|
elif len(padding) == 1:
|
||
|
padding = [padding[0]] * len(dims)
|
||
|
|
||
|
if isinstance(dilation, int):
|
||
|
dilation = [dilation] * len(dims)
|
||
|
elif len(dilation) == 1:
|
||
|
dilation = [dilation[0]] * len(dims)
|
||
|
|
||
|
output_padding_list: Optional[List[int]] = None
|
||
|
if output_padding:
|
||
|
if isinstance(output_padding, int):
|
||
|
output_padding_list = [output_padding] * len(dims)
|
||
|
elif len(output_padding) == 1:
|
||
|
output_padding_list = [output_padding[0]] * len(dims)
|
||
|
else:
|
||
|
output_padding_list = output_padding
|
||
|
|
||
|
for i in range(len(dims)):
|
||
|
# If output_padding is present, we are dealing with a transposed convolution
|
||
|
if output_padding_list:
|
||
|
ret_shape.append(
|
||
|
_formula_transposed(
|
||
|
dims[i],
|
||
|
padding[i],
|
||
|
dilation[i],
|
||
|
kernel_size[i],
|
||
|
stride[i],
|
||
|
output_padding_list[i],
|
||
|
))
|
||
|
else:
|
||
|
ret_shape.append(_formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i]))
|
||
|
return ret_shape
|
||
|
|
||
|
def pick_memory_format():
|
||
|
if input_tensor.is_contiguous(memory_format=torch.channels_last):
|
||
|
return torch.channels_last
|
||
|
elif input_tensor.is_contiguous(memory_format=torch.contiguous_format):
|
||
|
return torch.contiguous_format
|
||
|
elif input_tensor.is_contiguous(memory_format=torch.preserve_format):
|
||
|
return torch.preserve_format
|
||
|
|
||
|
kernel_size = weight.shape[2:]
|
||
|
dims = input_tensor.shape[2:]
|
||
|
if is_transposed:
|
||
|
out_channels = groups * weight.shape[1]
|
||
|
|
||
|
shape_out = calc_conv_nd_return_shape(
|
||
|
dims,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
dilation,
|
||
|
output_padding,
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
out_channels = weight.shape[0]
|
||
|
if weight.shape[1] != input_tensor.shape[1] / groups:
|
||
|
raise RuntimeError("Invalid channel dimensions")
|
||
|
shape_out = calc_conv_nd_return_shape(dims, kernel_size, stride, padding, dilation)
|
||
|
out = input_tensor.new_empty((input_tensor.shape[0], out_channels, *shape_out))
|
||
|
mem_fmt = pick_memory_format()
|
||
|
out = out.to(memory_format=mem_fmt) # type: ignore[call-overload]
|
||
|
return out
|
||
|
|
||
|
|
||
|
@register_meta(aten.convolution_backward.default)
|
||
|
def meta_conv_backward(grad_output: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, bias_sizes, stride,
|
||
|
padding, dilation, transposed, output_padding, groups, output_mask):
|
||
|
return torch.empty_like(input), torch.empty_like(weight), torch.empty((bias_sizes), device='meta')
|
||
|
|
||
|
|
||
|
@register_meta(aten.relu.default)
|
||
|
def meta_relu(input: torch.Tensor):
|
||
|
return torch.empty_like(input)
|
||
|
|
||
|
|
||
|
@register_meta(aten.hardswish.default)
|
||
|
def meta_hardswish(input: torch.Tensor):
|
||
|
return torch.empty_like(input)
|
||
|
|
||
|
|
||
|
@register_meta(aten.hardswish_backward.default)
|
||
|
def meta_hardswish_backward(grad_out: torch.Tensor, input: torch.Tensor):
|
||
|
grad_in = torch.empty_like(input)
|
||
|
return grad_in
|
||
|
|
||
|
|
||
|
@register_meta(aten.roll.default)
|
||
|
def meta_roll(input: torch.Tensor, shifts, dims):
|
||
|
return torch.empty_like(input)
|
||
|
|
||
|
|
||
|
@register_meta(aten.native_batch_norm.default)
|
||
|
def meta_bn(input: torch.Tensor, weight, bias, running_mean, running_var, training, momentum, eps):
|
||
|
n_input = input.size(1)
|
||
|
|
||
|
output = torch.empty_like(input)
|
||
|
running_mean = torch.empty((n_input), device='meta')
|
||
|
running_var = torch.empty((n_input), device='meta')
|
||
|
return output, running_mean, running_var
|
||
|
|
||
|
|
||
|
@register_meta(aten.native_batch_norm_backward.default)
|
||
|
def meta_bn_backward(dY: torch.Tensor, input: torch.Tensor, weight: torch.Tensor, running_mean, running_var, save_mean,
|
||
|
save_invstd, train, eps, output_mask):
|
||
|
dX = torch.empty_like(input)
|
||
|
dgamma = torch.empty_like(weight)
|
||
|
dbeta = torch.empty_like(weight)
|
||
|
return dX, dgamma, dbeta
|
||
|
|
||
|
|
||
|
@register_meta(aten.native_layer_norm.default)
|
||
|
def meta_ln(input: torch.Tensor, normalized_shape, weight, bias, eps):
|
||
|
n_input = input.size(1)
|
||
|
|
||
|
output = torch.empty_like(input)
|
||
|
running_mean = torch.empty((n_input), device='meta')
|
||
|
running_var = torch.empty((n_input), device='meta')
|
||
|
return output, running_mean, running_var
|
||
|
|
||
|
|
||
|
@register_meta(aten.native_layer_norm_backward.default)
|
||
|
def meta_ln_backward(dY: torch.Tensor, input: torch.Tensor, normalized_shape, mean, rstd, weight, bias,
|
||
|
grad_input_mask):
|
||
|
dX = torch.empty_like(input)
|
||
|
dgamma = torch.empty_like(weight)
|
||
|
dbeta = torch.empty_like(bias)
|
||
|
return dX, dgamma, dbeta
|
||
|
|
||
|
|
||
|
@register_meta(aten._adaptive_avg_pool2d_backward.default)
|
||
|
def meta_adaptive_avg_pool2d_backward(
|
||
|
grad_output: torch.Tensor,
|
||
|
input: torch.Tensor,
|
||
|
):
|
||
|
grad_input = torch.empty_like(input)
|
||
|
return torch.empty_like(input)
|
||
|
|
||
|
|
||
|
@register_meta(aten.index.Tensor)
|
||
|
def meta_index_Tensor(self, indices):
|
||
|
assert indices, "at least one index must be provided"
|
||
|
# aten::index is the internal advanced indexing implementation
|
||
|
# checkIndexTensorTypes and expandTensors
|
||
|
result: List[Optional[torch.Tensor]] = []
|
||
|
for i, index in enumerate(indices):
|
||
|
if index is not None:
|
||
|
assert index.dtype in [torch.long, torch.int8, torch.bool],\
|
||
|
"tensors used as indices must be long, byte or bool tensors"
|
||
|
if index.dtype in [torch.int8, torch.bool]:
|
||
|
nonzero = index.nonzero()
|
||
|
k = len(result)
|
||
|
assert k + index.ndim <= self.ndim, f"too many indices for tensor of dimension {self.ndim}"
|
||
|
for j in range(index.ndim):
|
||
|
assert index.shape[j] == self.shape[
|
||
|
k +
|
||
|
j], f"The shape of the mask {index.shape} at index {i} does not match the shape of the indexed tensor {self.shape} at index {k + j}"
|
||
|
result.append(nonzero.select(1, j))
|
||
|
else:
|
||
|
result.append(index)
|
||
|
else:
|
||
|
result.append(index)
|
||
|
indices = result
|
||
|
assert len(indices) <= self.ndim, f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})"
|
||
|
# expand_outplace
|
||
|
import torch._refs as refs # avoid import cycle in mypy
|
||
|
|
||
|
indices = list(refs._maybe_broadcast(*indices))
|
||
|
# add missing null tensors
|
||
|
while len(indices) < self.ndim:
|
||
|
indices.append(None)
|
||
|
|
||
|
# hasContiguousSubspace
|
||
|
# true if all non-null tensors are adjacent
|
||
|
# See:
|
||
|
# https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing
|
||
|
# https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency
|
||
|
state = 0
|
||
|
has_contiguous_subspace = False
|
||
|
for index in indices:
|
||
|
if state == 0:
|
||
|
if index is not None:
|
||
|
state = 1
|
||
|
elif state == 1:
|
||
|
if index is None:
|
||
|
state = 2
|
||
|
else:
|
||
|
if index is not None:
|
||
|
break
|
||
|
else:
|
||
|
has_contiguous_subspace = True
|
||
|
|
||
|
# transposeToFront
|
||
|
# This is the logic that causes the newly inserted dimensions to show up
|
||
|
# at the beginning of the tensor, if they're not contiguous
|
||
|
if not has_contiguous_subspace:
|
||
|
dims = []
|
||
|
transposed_indices = []
|
||
|
for i, index in enumerate(indices):
|
||
|
if index is not None:
|
||
|
dims.append(i)
|
||
|
transposed_indices.append(index)
|
||
|
for i, index in enumerate(indices):
|
||
|
if index is None:
|
||
|
dims.append(i)
|
||
|
transposed_indices.append(index)
|
||
|
self = self.permute(dims)
|
||
|
indices = transposed_indices
|
||
|
|
||
|
# AdvancedIndex::AdvancedIndex
|
||
|
# Now we can assume the indices have contiguous subspace
|
||
|
# This is simplified from AdvancedIndex which goes to more effort
|
||
|
# to put the input and indices in a form so that TensorIterator can
|
||
|
# take them. If we write a ref for this, probably that logic should
|
||
|
# get implemented
|
||
|
before_shape: List[int] = []
|
||
|
after_shape: List[int] = []
|
||
|
replacement_shape: List[int] = []
|
||
|
for dim, index in enumerate(indices):
|
||
|
if index is None:
|
||
|
if replacement_shape:
|
||
|
after_shape.append(self.shape[dim])
|
||
|
else:
|
||
|
before_shape.append(self.shape[dim])
|
||
|
else:
|
||
|
replacement_shape = list(index.shape)
|
||
|
return self.new_empty(before_shape + replacement_shape + after_shape)
|