You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_trainer/test_pipeline/test_p2p.py

150 lines
5.6 KiB

3 years ago
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.distributed as dist
from colossalai.communication import (recv_backward, recv_forward,
recv_tensor_meta, send_backward,
send_backward_recv_forward, send_forward,
send_forward_recv_backward,
send_tensor_meta)
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import init_dist, parse_args
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
from colossalai.logging import get_dist_logger
3 years ago
from colossalai.utils import get_current_device
BATCH_SIZE = 32
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
CONFIG = dict(
parallel=dict(
pipeline=dict(size=4),
tensor=dict(size=1, mode=None)
),
seed=1024
)
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-5, atol=1e-3)
def check_forward(output_tensor, rank, logger):
dist.barrier()
if gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = output_tensor.clone()
else:
tensor = recv_forward(output_tensor.shape)
logger.info('Rank {} received forward. Correct tensor: {}'.format(
rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
send_forward(tensor)
logger.info('Rank {} sent forward.'.format(rank))
def check_backward(output_grad, rank, logger):
dist.barrier()
if gpc.is_last_rank(ParallelMode.PIPELINE):
grad = output_grad.clone()
else:
grad = recv_backward(output_grad.shape)
logger.info('Rank {} received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
if not gpc.is_first_rank(ParallelMode.PIPELINE):
send_backward(grad)
logger.info('Rank {} sent backward.'.format(rank))
def check_forward_backward(output_tensor, output_grad, rank, logger):
dist.barrier()
if not gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
logger.info(
'Rank {} sent backward received forward. Correct tensor: {}'.
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
format(rank, check_equal(tensor, output_tensor)))
3 years ago
if not gpc.is_last_rank(ParallelMode.PIPELINE):
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
logger.info(
'Rank {} sent forward received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
def check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
# recv_tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
if rank % 2 == 0:
need_meta = True
need_meta = send_tensor_meta(tensor, need_meta)
logger.info('Rank {} shape sent (need meta: {}).'.format(
rank, need_meta))
req = dist.broadcast(tensor, src=rank, group=down_group, async_op=True)
req.wait()
out = tensor.clone()
logger.info('Rank {} test op: tensor sent.'.format(rank))
else:
recv_tensor_shape = recv_tensor_meta(None)
logger.info('Rank {} shape received. Correct shape: {}'.format(
rank, tensor_shape == recv_tensor_shape))
out = torch.empty(recv_tensor_shape, dtype=dtype, device=device)
req = dist.broadcast(out, src=prev_rank, group=up_group, async_op=True)
req.wait()
logger.info('Rank {} test op: received tensor ({})'.format(
rank, out.shape))
logger.info('Rank {} test op. Correct tensor: {}'.format(
rank, check_equal(tensor, out)))
def test_comm(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger)
check_forward(tensor, rank, logger)
check_backward(grad, rank, logger)
check_forward_backward(tensor, grad, rank, logger)
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_main():
args = parse_args()
world_size = args.world_size
init_dist(CONFIG)
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
3 years ago
logger = get_dist_logger()
3 years ago
rank = gpc.get_global_rank()
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
up_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_PREV)
up_group = gpc.get_group(ParallelMode.PIPELINE_PREV)
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
down_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_NEXT)
down_group = gpc.get_group(ParallelMode.PIPELINE_NEXT)
logger.info(
'Rank {0}: prev rank {1} (up: {2}), next rank {3} (down: {4})'.format(
rank, prev_rank, up_ranks, next_rank, down_ranks))
logger.info('Distributed environment is initialzied.')
test_comm(world_size, rank, prev_rank, next_rank, up_group, down_group,
logger)
if __name__ == '__main__':
test_main()