ColossalAI/colossalai/legacy/inference/quant/smoothquant/models/llama.py

839 lines
34 KiB
Python
Raw Normal View History

import math
import os
import types
from collections import defaultdict
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_int.nn.bmm import BMM_S8T_S8N_F32T, BMM_S8T_S8N_S8T
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
LLAMA_INPUTS_DOCSTRING,
LlamaAttention,
LlamaDecoderLayer,
LlamaMLP,
LlamaRotaryEmbedding,
repeat_kv,
rotate_half,
)
from transformers.utils import add_start_docstrings_to_model_forward
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
from colossalai.kernel.triton import (
copy_kv_cache_to_dest,
int8_rotary_embedding_fwd,
smooth_llama_context_attn_fwd,
smooth_token_attention_fwd,
)
from .base_model import BaseSmoothForCausalLM
from .linear import W8A8B8O8Linear, W8A8BFP32O32LinearSiLU, W8A8BFP32OFP32Linear
class LLamaSmoothquantAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
if (self.head_dim * num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {num_heads})."
)
self.qk_bmm = BMM_S8T_S8N_F32T(1.0)
self.pv_bmm = BMM_S8T_S8N_S8T(1.0)
self.k_proj = W8A8B8O8Linear(hidden_size, hidden_size)
self.v_proj = W8A8B8O8Linear(hidden_size, hidden_size)
self.q_proj = W8A8B8O8Linear(hidden_size, hidden_size)
self.o_proj = W8A8BFP32OFP32Linear(hidden_size, hidden_size)
self.register_buffer("q_output_scale", torch.tensor([1.0]))
self.register_buffer("k_output_scale", torch.tensor([1.0]))
self.register_buffer("v_output_scale", torch.tensor([1.0]))
self.register_buffer("q_rotary_output_scale", torch.tensor([1.0]))
self.register_buffer("k_rotary_output_scale", torch.tensor([1.0]))
self.register_buffer("out_input_scale", torch.tensor([1.0]))
self.register_buffer("attn_input_scale", torch.tensor([1.0]))
self._init_rope()
self.num_key_value_heads = num_heads
def _init_rope(self):
self.rotary_emb = LlamaRotaryEmbedding(
self.head_dim,
max_position_embeddings=2048,
base=10000.0,
)
@staticmethod
def pack(
module: LlamaAttention,
attn_input_scale: float,
q_output_scale: float,
k_output_scale: float,
v_output_scale: float,
q_rotary_output_scale: float,
k_rotary_output_scale: float,
out_input_scale: float,
):
int8_module = LLamaSmoothquantAttention(module.hidden_size, module.num_heads)
int8_module.attn_input_scale = torch.tensor([attn_input_scale])
int8_module.q_output_scale = torch.tensor([q_output_scale])
int8_module.k_output_scale = torch.tensor([k_output_scale])
int8_module.v_output_scale = torch.tensor([v_output_scale])
int8_module.q_rotary_output_scale = torch.tensor([q_rotary_output_scale])
int8_module.k_rotary_output_scale = torch.tensor([k_rotary_output_scale])
int8_module.q_proj = W8A8B8O8Linear.from_float(module.q_proj, attn_input_scale, q_output_scale)
int8_module.k_proj = W8A8B8O8Linear.from_float(module.k_proj, attn_input_scale, k_output_scale)
int8_module.v_proj = W8A8B8O8Linear.from_float(module.v_proj, attn_input_scale, v_output_scale)
int8_module.o_proj = W8A8BFP32OFP32Linear.from_float(module.o_proj, out_input_scale)
int8_module.out_input_scale = torch.tensor([out_input_scale])
return int8_module
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
@torch.no_grad()
def forward(
self,
hidden_states: torch.Tensor,
rotary_emb: Tuple[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
infer_state: Optional[BatchInferState] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
cos = rotary_emb[0]
sin = rotary_emb[1]
int8_rotary_embedding_fwd(
query_states.view(-1, self.num_heads, self.head_dim),
cos,
sin,
self.q_output_scale.item(),
self.q_rotary_output_scale.item(),
)
int8_rotary_embedding_fwd(
key_states.view(-1, self.num_heads, self.head_dim),
cos,
sin,
self.k_output_scale.item(),
self.k_rotary_output_scale.item(),
)
def _copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager):
copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id])
copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id])
return
query_states = query_states.view(-1, self.num_heads, self.head_dim)
key_states = key_states.view(-1, self.num_heads, self.head_dim)
value_states = value_states.view(-1, self.num_heads, self.head_dim)
if infer_state.is_context_stage:
# first token generation
# copy key and value calculated in current step to memory manager
_copy_kv_to_mem_cache(
infer_state.decode_layer_id,
key_states,
value_states,
infer_state.context_mem_index,
infer_state.cache_manager,
)
attn_output = torch.empty_like(query_states)
smooth_llama_context_attn_fwd(
query_states,
key_states,
value_states,
attn_output,
self.q_rotary_output_scale.item(),
self.k_rotary_output_scale.item(),
self.v_output_scale.item(),
self.out_input_scale.item(),
infer_state.start_loc,
infer_state.seq_len,
q_len,
)
else:
if infer_state.decode_is_contiguous:
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
]
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
infer_state.decode_mem_start : infer_state.decode_mem_end, :, :
]
cache_k.copy_(key_states)
cache_v.copy_(value_states)
else:
# if decode is not contiguous, use triton kernel to copy key and value cache
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head
_copy_kv_to_mem_cache(
infer_state.decode_layer_id,
key_states,
value_states,
infer_state.decode_mem_index,
infer_state.cache_manager,
)
# (batch_size, seqlen, nheads, headdim)
attn_output = torch.empty_like(query_states)
smooth_token_attention_fwd(
query_states,
infer_state.cache_manager.key_buffer[infer_state.decode_layer_id],
infer_state.cache_manager.value_buffer[infer_state.decode_layer_id],
attn_output,
self.q_rotary_output_scale.item(),
self.k_rotary_output_scale.item(),
self.v_output_scale.item(),
self.out_input_scale.item(),
infer_state.block_loc,
infer_state.start_loc,
infer_state.seq_len,
infer_state.max_len_in_batch,
)
attn_output = attn_output.view(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
return attn_output, None, None
class LlamaLayerNormQ(torch.nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.input_scale = 1.0
self.variance_epsilon = eps
self.register_buffer("weight", torch.ones(dim, dtype=torch.float32))
def forward(self, x):
ln_output_fp = torch.nn.functional.layer_norm(x, x.shape[-1:], self.weight, None, self.variance_epsilon)
ln_output_int8 = ln_output_fp.round().clamp(-128, 127).to(torch.int8)
return ln_output_int8
@staticmethod
def from_float(module: torch.nn.LayerNorm, output_scale: float):
assert module.weight.shape[0] == module.weight.numel()
q_module = LlamaLayerNormQ(module.weight.shape[0], module.variance_epsilon)
q_module.weight = module.weight / output_scale
return q_module
class LlamaSmoothquantMLP(nn.Module):
def __init__(self, intermediate_size, hidden_size):
super().__init__()
self.gate_proj = W8A8BFP32O32LinearSiLU(hidden_size, intermediate_size)
self.up_proj = W8A8BFP32OFP32Linear(hidden_size, intermediate_size)
self.down_proj = W8A8BFP32OFP32Linear(intermediate_size, hidden_size)
self.register_buffer("down_proj_input_scale", torch.tensor([1.0]))
@staticmethod
def pack(
mlp_module: LlamaMLP,
gate_proj_input_scale: float,
up_proj_input_scale: float,
down_proj_input_scale: float,
):
int8_module = LlamaSmoothquantMLP(
mlp_module.intermediate_size,
mlp_module.hidden_size,
)
int8_module.gate_proj = W8A8BFP32O32LinearSiLU.from_float(mlp_module.gate_proj, gate_proj_input_scale)
int8_module.up_proj = W8A8BFP32OFP32Linear.from_float(mlp_module.up_proj, up_proj_input_scale)
int8_module.down_proj = W8A8BFP32OFP32Linear.from_float(mlp_module.down_proj, down_proj_input_scale)
int8_module.down_proj_input_scale = torch.tensor([down_proj_input_scale])
return int8_module
def forward(
self,
hidden_states: torch.Tensor,
):
x_shape = hidden_states.shape
gate_out = self.gate_proj(hidden_states)
up_out = self.up_proj(hidden_states)
inter_out = gate_out * up_out
inter_out = inter_out.div_(self.down_proj_input_scale.item()).round().clamp(-128, 127).to(torch.int8)
down_out = self.down_proj(inter_out)
down_out = down_out.view(*x_shape[:-1], -1)
return down_out
class LlamaSmoothquantDecoderLayer(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LLamaSmoothquantAttention(config.hidden_size, config.num_attention_heads)
self.mlp = LlamaSmoothquantMLP(config.intermediate_size, config.hidden_size)
self.input_layernorm = LlamaLayerNormQ(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaLayerNormQ(config.hidden_size, eps=config.rms_norm_eps)
@staticmethod
def pack(
module: LlamaDecoderLayer,
attn_input_scale: float,
q_output_scale: float,
k_output_scale: float,
v_output_scale: float,
q_rotary_output_scale: float,
k_rotary_output_scale: float,
out_input_scale: float,
gate_input_scale: float,
up_input_scale: float,
down_input_scale: float,
):
config = module.self_attn.config
int8_decoder_layer = LlamaSmoothquantDecoderLayer(config)
int8_decoder_layer.input_layernorm = LlamaLayerNormQ.from_float(module.input_layernorm, attn_input_scale)
int8_decoder_layer.self_attn = LLamaSmoothquantAttention.pack(
module.self_attn,
attn_input_scale,
q_output_scale,
k_output_scale,
v_output_scale,
q_rotary_output_scale,
k_rotary_output_scale,
out_input_scale,
)
int8_decoder_layer.post_attention_layernorm = LlamaLayerNormQ.from_float(
module.post_attention_layernorm, gate_input_scale
)
int8_decoder_layer.mlp = LlamaSmoothquantMLP.pack(
module.mlp,
gate_input_scale,
up_input_scale,
down_input_scale,
)
return int8_decoder_layer
def forward(
self,
hidden_states: torch.Tensor,
rotary_emb: Tuple[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
padding_mask: Optional[torch.LongTensor] = None,
infer_state: Optional[BatchInferState] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
rotary_emb=rotary_emb,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
padding_mask=padding_mask,
infer_state=infer_state,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, None, None
class LlamaApplyRotary(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
x_embed = (x * cos) + (rotate_half(x) * sin)
return x_embed
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_decoder_layer_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states = self.q_apply_rotary(query_states, cos, sin, position_ids)
key_states = self.k_apply_rotary(key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def init_to_get_rotary(config, base=10000, use_elem=False):
"""
This function initializes the rotary positional embedding, it is compatible for all models and is called in ShardFormer
Args:
base : calculation arg
use_elem : activated when using chatglm-based models
"""
config.head_dim_ = config.hidden_size // config.num_attention_heads
if not hasattr(config, "rope_scaling"):
rope_scaling_factor = 1.0
else:
rope_scaling_factor = config.rope_scaling.factor if config.rope_scaling is not None else 1.0
if hasattr(config, "max_sequence_length"):
max_seq_len = config.max_sequence_length
elif hasattr(config, "max_position_embeddings"):
max_seq_len = config.max_position_embeddings * rope_scaling_factor
else:
max_seq_len = 2048 * rope_scaling_factor
base = float(base)
# NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
try:
ntk_alpha = float(os.environ.get("INFER_NTK_ALPHA", 1))
assert ntk_alpha >= 1
if ntk_alpha > 1:
print(f"Note: NTK enabled, alpha set to {ntk_alpha}")
max_seq_len *= ntk_alpha
base = base * (ntk_alpha ** (config.head_dim_ / (config.head_dim_ - 2))) # Base change formula
except:
pass
n_elem = config.head_dim_
if use_elem:
n_elem //= 2
inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem))
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
freqs = torch.outer(t, inv_freq)
_cos_cached = torch.cos(freqs).to(torch.float)
_sin_cached = torch.sin(freqs).to(torch.float)
return _cos_cached, _sin_cached
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def llama_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
infer_state = self.infer_state
if infer_state.is_context_stage:
past_key_values_length = 0
else:
past_key_values_length = infer_state.max_len_in_batch - 1
seq_length_with_past = seq_length + past_key_values_length
# NOTE: differentiate with prefill stage
# block_loc require different value-assigning method for two different stage
# NOTE: differentiate with prefill stage
# block_loc require different value-assigning method for two different stage
if infer_state.is_context_stage:
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
infer_state.init_block_loc(
infer_state.block_loc, infer_state.seq_len, seq_length, infer_state.context_mem_index
)
else:
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
if alloc_mem is not None:
infer_state.decode_is_contiguous = True
infer_state.decode_mem_index = alloc_mem[0]
infer_state.decode_mem_start = alloc_mem[1]
infer_state.decode_mem_end = alloc_mem[2]
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
else:
print(f" *** Encountered allocation non-contiguous")
print(f" infer_state.cache_manager.max_len_in_batch: {infer_state.max_len_in_batch}")
infer_state.decode_is_contiguous = False
alloc_mem = infer_state.cache_manager.alloc(batch_size)
infer_state.decode_mem_index = alloc_mem
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device)
padding_mask = None
else:
if 0 in attention_mask:
padding_mask = attention_mask
else:
padding_mask = None
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
raise NotImplementedError("not implement gradient_checkpointing and training options ")
if past_key_values_length == 0:
position_cos = torch.index_select(self._cos_cached, 0, position_ids.view(-1)).view(
position_ids.view(-1).shape[0], -1
)
position_sin = torch.index_select(self._sin_cached, 0, position_ids.view(-1)).view(
position_ids.view(-1).shape[0], -1
)
else:
position_cos = torch.index_select(self._cos_cached, 0, position_ids.view(-1)).view(batch_size, -1)
position_sin = torch.index_select(self._sin_cached, 0, position_ids.view(-1)).view(batch_size, -1)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
infer_state.decode_layer_id = 0
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
layer_outputs = decoder_layer(
hidden_states,
rotary_emb=(position_cos, position_sin),
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
padding_mask=padding_mask,
infer_state=infer_state,
)
hidden_states = layer_outputs[0]
infer_state.decode_layer_id += 1
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
infer_state.is_context_stage = False
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
infer_state.seq_len += 1
infer_state.max_len_in_batch += 1
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class SmoothLlamaForCausalLM(BaseSmoothForCausalLM):
layer_type = "LlamaDecoderLayer"
def __init__(self, model: PreTrainedModel, quantized: bool = False):
super().__init__(model, quantized)
# Adatped from https://github.com/mit-han-lab/smoothquant/blob/main/smoothquant/calibration.py
def get_act_dict(
self,
tokenizer,
dataset,
num_samples=512,
seq_len=512,
):
llama_model = self.model
llama_model.eval()
device = next(llama_model.parameters()).device
# print("model:", llama_model)
act_dict = defaultdict(dict)
def stat_io_hook(m, x, y, name):
if isinstance(x, tuple):
x = x[0]
if name not in act_dict or "input" not in act_dict[name]:
act_dict[name]["input"] = x.detach().abs().max().item()
else:
act_dict[name]["input"] = max(act_dict[name]["input"], x.detach().abs().max().item())
if isinstance(y, tuple):
y = y[0]
if name not in act_dict or "output" not in act_dict[name]:
act_dict[name]["output"] = y.detach().abs().max().item()
else:
act_dict[name]["output"] = max(act_dict[name]["output"], y.detach().abs().max().item())
for name, m in llama_model.named_modules():
if isinstance(m, LlamaAttention):
setattr(m, "q_apply_rotary", LlamaApplyRotary())
setattr(m, "k_apply_rotary", LlamaApplyRotary())
m.forward = types.MethodType(llama_decoder_layer_forward, m)
hooks = []
for name, m in llama_model.named_modules():
if isinstance(m, LlamaApplyRotary):
hooks.append(m.register_forward_hook(partial(stat_io_hook, name=name)))
if isinstance(m, torch.nn.Linear):
hooks.append(m.register_forward_hook(partial(stat_io_hook, name=name)))
self.collect_act_dict(llama_model, tokenizer, dataset, act_dict, device, num_samples, seq_len)
for hook in hooks:
hook.remove()
return act_dict
def smooth_fn(self, scales, alpha=0.5):
model = self.model
for name, module in model.named_modules():
if isinstance(module, LlamaDecoderLayer):
attn_ln = module.input_layernorm
qkv = [module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj]
qkv_input_scales = scales[name + ".self_attn.q_proj"]
self.smooth_ln_fcs(attn_ln, qkv, qkv_input_scales, alpha)
def create_quantized_model(model):
llama_config = model.config
for i, layer in enumerate(model.model.layers):
model.model.layers[i] = LlamaSmoothquantDecoderLayer(llama_config)
model.model.forward = types.MethodType(llama_model_forward, model.model)
cos, sin = init_to_get_rotary(llama_config)
model.model.register_buffer("_cos_cached", cos)
model.model.register_buffer("_sin_cached", sin)
def quantized(
self,
tokenizer,
dataset,
num_samples=512,
seq_len=512,
alpha=0.5,
):
llama_model = self.model
llama_config = llama_model.config
act_scales = self.get_act_scales(llama_model, tokenizer, dataset, num_samples, seq_len)
self.smooth_fn(act_scales, alpha)
act_dict = self.get_act_dict(tokenizer, dataset, num_samples, seq_len)
decoder_layer_scales = []
for idx in range(llama_config.num_hidden_layers):
scale_dict = {}
scale_dict["attn_input_scale"] = act_dict[f"model.layers.{idx}.self_attn.q_proj"]["input"] / 127
scale_dict["q_output_scale"] = act_dict[f"model.layers.{idx}.self_attn.q_proj"]["output"] / 127
scale_dict["k_output_scale"] = act_dict[f"model.layers.{idx}.self_attn.k_proj"]["output"] / 127
scale_dict["v_output_scale"] = act_dict[f"model.layers.{idx}.self_attn.v_proj"]["output"] / 127
scale_dict["q_rotary_output_scale"] = (
act_dict[f"model.layers.{idx}.self_attn.q_apply_rotary"]["output"] / 127
)
scale_dict["k_rotary_output_scale"] = (
act_dict[f"model.layers.{idx}.self_attn.k_apply_rotary"]["output"] / 127
)
scale_dict["out_input_scale"] = act_dict[f"model.layers.{idx}.self_attn.o_proj"]["input"] / 127
scale_dict["gate_input_scale"] = act_dict[f"model.layers.{idx}.mlp.gate_proj"]["input"] / 127
scale_dict["up_input_scale"] = act_dict[f"model.layers.{idx}.mlp.up_proj"]["input"] / 127
scale_dict["down_input_scale"] = act_dict[f"model.layers.{idx}.mlp.down_proj"]["input"] / 127
decoder_layer_scales.append(scale_dict)
for i, layer in enumerate(llama_model.model.layers):
orig_layer = layer
llama_model.model.layers[i] = LlamaSmoothquantDecoderLayer.pack(orig_layer, **decoder_layer_scales[i])
llama_model.model.forward = types.MethodType(llama_model_forward, llama_model.model)
cos, sin = init_to_get_rotary(llama_config)
llama_model.model.register_buffer("_cos_cached", cos.to(self.model.device))
llama_model.model.register_buffer("_sin_cached", sin.to(self.model.device))