ColossalAI/colossalai/auto_parallel/checkpoint/ckpt_solver_chen.py

87 lines
3.4 KiB
Python
Raw Normal View History

import math
from copy import deepcopy
from typing import List, Set, Tuple
from torch.fx import Graph, Node
from colossalai.fx.profiler import calculate_fwd_in, calculate_fwd_tmp
from .ckpt_solver_base import CheckpointSolverBase
__all__ = ["CheckpointSolverChen"]
class CheckpointSolverChen(CheckpointSolverBase):
def __init__(self, graph: Graph, cnode: List[str] = None, num_grids: int = 6):
"""
This is the simple implementation of Algorithm 3 in https://arxiv.org/abs/1604.06174.
Note that this algorithm targets at memory optimization only, using techniques in appendix A.
Usage:
Assume that we have a ``GraphModule``, and we have already done the extractions
to the graph to retrieve all information needed, then we could use the following
code to find a solution using ``CheckpointSolverChen``:
>>> solver = CheckpointSolverChen(gm.graph)
>>> chen_graph = solver.solve()
>>> gm.graph = chen_graph # set the graph to a new graph
Args:
graph (Graph): The computing graph to be optimized.
cnode (List[str], optional): Common node List, should be the subset of input. Defaults to None.
num_grids (int, optional): Number of grids to search for b. Defaults to 6.
"""
super().__init__(graph, 0, 0, True, cnode)
self.num_grids = num_grids
def solve(self) -> Graph:
"""Solve the checkpointing problem using Algorithm 3.
Returns:
graph (Graph): The optimized graph, should be a copy of the original graph.
"""
checkpointable_op = ["call_module", "call_method", "call_function", "get_attr"]
ckpt = self.grid_search()
for i, seg in enumerate(ckpt):
for idx in range(*seg):
nodes = self.node_list[idx]
for n in nodes:
if n.op in checkpointable_op:
n.meta["activation_checkpoint"] = i
return deepcopy(self.graph)
def run_chen_greedy(self, b: int = 0) -> Tuple[Set, int]:
"""
This is the simple implementation of Algorithm 3 in https://arxiv.org/abs/1604.06174.
"""
ckpt_intv = []
temp = 0
x = 0
y = 0
prev_idx = 2
for idx, nodes in enumerate(self.node_list):
for n in nodes:
n: Node
temp += calculate_fwd_in(n) + calculate_fwd_tmp(n)
y = max(y, temp)
if temp > b and idx > prev_idx:
x += calculate_fwd_in(nodes[0])
temp = 0
ckpt_intv.append((prev_idx, idx + 1))
prev_idx = idx + 1
return ckpt_intv, math.floor(math.sqrt(x * y))
def grid_search(self) -> Set:
"""
Search ckpt strategy with b = 0, then run the allocation algorithm again with b = xy.
Grid search over [2/2 b, 2 b] for ``ckpt_opt`` over ``num_grids`` as in appendix A.
"""
_, b_approx = self.run_chen_greedy(0)
b_min, b_max = math.floor(b_approx / math.sqrt(2)), math.ceil(b_approx * math.sqrt(2))
b_opt = math.inf
for b in range(b_min, b_max, (b_max - b_min) // self.num_grids):
ckpt_intv, b_approx = self.run_chen_greedy(b)
if b_approx < b_opt:
b_opt = b_approx
ckpt_opt = ckpt_intv
return ckpt_opt