ColossalAI/colossalai/gemini/update/search_utils.py

97 lines
3.1 KiB
Python
Raw Normal View History

from typing import Dict, List
import numpy as np
import torch.nn as nn
from colossalai.tensor import ColoParameter
def _filter_exlarge_params(model: nn.Module, size_dict: Dict[int, List[int]]) -> None:
"""Filter those parameters whose size is too large from others.
"""
params_size = [p.numel() for p in model.parameters()]
params_size_arr = np.array(params_size)
std = np.std(params_size_arr)
mean = np.mean(params_size_arr)
upper_limit = mean + 3 * std
for key in size_dict:
org_list = size_dict[key]
size_dict[key] = list(filter(lambda x: x <= upper_limit, org_list))
def _get_unused_byte(size_list: List[int], chunk_size: int) -> int:
"""Get unused byte for a certain chunk size.
"""
acc = 0
left = 0
for s in size_list:
if s > left:
acc += left
left = chunk_size
left -= s
return left + acc
def clasify_params(model: nn.Module) -> Dict[int, List[ColoParameter]]:
params_dict: Dict[int, List[ColoParameter]] = dict()
for param in model.parameters():
assert isinstance(param, ColoParameter), "please init model in the ColoInitContext"
param_key = param.process_group.dp_world_size()
if param_key not in params_dict:
params_dict[param_key] = []
params_dict[param_key].append(param)
return params_dict
def search_chunk_configuration(
model: nn.Module,
search_range_mb: int,
search_interval_byte: int, # hidden size is the best value for the interval
min_chunk_size_mb: int = 32,
filter_exlarge_params: bool = True
):
search_range_byte = search_range_mb * 1024 ** 2
min_chunk_size_byte = min_chunk_size_mb * 1024 ** 2
assert search_range_byte % search_interval_byte == 0
params_dict = clasify_params(model)
config_dict: Dict[int, Dict] = dict()
size_dict: Dict[int, List[int]] = dict()
for key in params_dict:
params_list = params_dict[key]
size_list = [p.numel() for p in params_list]
# let small parameters keep gathered in CUDA all the time
total_size = sum(size_list)
if total_size < min_chunk_size_byte:
config_dict[key] = dict(chunk_size=total_size, keep_gathered=True)
else:
size_dict[key] = size_list
if filter_exlarge_params:
_filter_exlarge_params(model, size_dict)
max_size = min_chunk_size_byte
for key in size_dict:
max_size = max(max_size, max(size_dict[key]))
min_chunk_waste = float('+inf')
best_chunk_size = max_size
for chunk_size in range(max_size, max_size + search_range_byte + 1, search_interval_byte):
temp_waste = 0
for key in size_dict:
temp_waste += _get_unused_byte(size_dict[key], chunk_size)
if temp_waste < min_chunk_waste:
min_chunk_waste = temp_waste
best_chunk_size = chunk_size
for key in params_dict:
if key in config_dict:
continue
config_dict[key] = dict(chunk_size=best_chunk_size, keep_gathered=False)
return config_dict