ColossalAI/colossalai/fx/profiler/profiler_function/arithmetic.py

84 lines
2.9 KiB
Python
Raw Normal View History

[fx] add profiler for fx nodes. (#1480) * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] merge development into main (#1) * [fx] activation checkpointing using Chen strategies. * [fx] add test for ckpt_solver_chen * [fx] add vanilla activation checkpoint search with test on resnet and densenet * [fx] add a namespace code for solver_chen. * [fx] fix the false interpretation of algorithm 3 in https://arxiv.org/abs/1604.06174. * [fx] fix lowercase naming conventions. * [fx] simplify test for ckpt. * [fx] add rules to linearize computation graphs for searching. (#2) * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] merge development into main (#1) * [fx] activation checkpointing using Chen strategies. * [fx] add test for ckpt_solver_chen * [fx] add vanilla activation checkpoint search with test on resnet and densenet * [fx] add a namespace code for solver_chen. * [fx] fix the false interpretation of algorithm 3 in https://arxiv.org/abs/1604.06174. * [fx] fix lowercase naming conventions. * [fx] simplify test for ckpt. * [fx] fix test and algorithm bugs in activation checkpointing. * [fx] polish ckpt_test. * [fx] add rules to linearize computation graphs for searching. * [fx] remove chen_sqrt for sake of simplicity * [fx] remove chen_sqrt for sake of simplicity * [fx] remove chen_sqrt for sake of simplicity * [fx] remove chen_sqrt for sake of simplicity * [fx] fix inconsistencies. * [fx] fix MetaInfoProp. * [fx] fix MetaInfoProp. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] consider MetaInfoProp for inplace operands. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] add profiler for fx nodes. * [fx] fix error in tests. * [fx] unfix bug. * [fx] unfix bug.
2022-08-24 08:22:44 +00:00
from typing import Any, Optional, Tuple, Union
import torch
from ..registry import meta_profiler_function
def _prod(dims):
p = 1
for v in dims:
p *= v
return p
def _elementwise_flops_compute(input, other):
# copied from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py#L763
if not torch.is_tensor(input):
if torch.is_tensor(other):
return _prod(other.shape), 0
else:
return 1, 0
elif not torch.is_tensor(other):
return _prod(input.shape), 0
else:
dim_input = len(input.shape)
dim_other = len(other.shape)
max_dim = max(dim_input, dim_other)
final_shape = []
for i in range(max_dim):
in_i = input.shape[i] if i < dim_input else 1
ot_i = other.shape[i] if i < dim_other else 1
if in_i > ot_i:
final_shape.append(in_i)
else:
final_shape.append(ot_i)
flops = _prod(final_shape)
return flops, 0
@meta_profiler_function.register(torch.add)
@meta_profiler_function.register('add') # for built-in op +
@meta_profiler_function.register('iadd') # for built-in op +=
@meta_profiler_function.register('sub') # for built-in op -
@meta_profiler_function.register('isub') # for built-in op -=
@meta_profiler_function.register('mul') # for built-in op *
@meta_profiler_function.register('imul') # for built-in op *=
def torch_add_like_ops(input: Any, other: Any, *, out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
return _elementwise_flops_compute(input, other)
@meta_profiler_function.register(torch.abs)
def torch_elementwise_op(input: torch.Tensor, *, out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
flops = input.numel()
macs = 0
return flops, macs
@meta_profiler_function.register(torch.matmul)
@meta_profiler_function.register('matmul') # for built-in op @
@meta_profiler_function.register(torch.Tensor.matmul)
def torch_matmul(input: torch.Tensor, other: torch.Tensor, *, out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
macs = _prod(input.shape) * other.shape[-1]
flops = 2 * macs
return flops, macs
@meta_profiler_function.register(torch.bmm)
def torch_bmm(input: torch.Tensor, other: torch.Tensor, *, out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
macs = _prod(input.shape) * other.shape[-1]
flops = 2 * macs
return flops, macs
@meta_profiler_function.register(torch.var_mean)
def torch_var_mean(input: torch.Tensor,
dim: Union[int, Tuple[int, ...]],
unbiased: Optional[bool] = True,
keepdim: Optional[bool] = False,
*,
out: Optional[torch.Tensor] = None) -> Tuple[int, int]:
assert out is None, 'saving to out is not supported yet'
flops = input.numel() * 3
macs = 0
return flops, macs