ColossalAI/examples/language/opt/opt_train_demo.py

143 lines
5.1 KiB
Python
Raw Normal View History

import time
import torch
import datasets
import transformers
from transformers import AutoConfig, OPTForCausalLM, AutoTokenizer
from transformers import get_linear_schedule_with_warmup
from transformers.utils.versions import require_version
from tqdm import tqdm
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.tensor import ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from args import parse_demo_args
from data import NetflixDataset, netflix_collator
require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt")
require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt")
def move_to_cuda(batch, device):
return {k: v.to(device) for k, v in batch.items()}
def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator):
torch.cuda.synchronize()
model.train()
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar:
for batch in pbar:
2023-06-08 08:09:32 +00:00
# Forward
optimizer.zero_grad()
batch = move_to_cuda(batch, torch.cuda.current_device())
outputs = model(use_cache=False, **batch)
loss = outputs['loss']
# Backward
booster.backward(loss, optimizer)
optimizer.step()
lr_scheduler.step()
# Print batch loss
pbar.set_postfix({'loss': loss.item()})
def main():
args = parse_demo_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
coordinator = DistCoordinator()
world_size = coordinator.world_size
# Manage loggers
disable_existing_loggers()
logger = get_dist_logger()
if coordinator.is_master():
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Build OPT model
config = AutoConfig.from_pretrained(args.model_name_or_path)
model = OPTForCausalLM.from_pretrained(args.model_name_or_path, config=config)
logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0])
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Set plugin
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
plugin = GeminiPlugin(device=get_current_device(),
placement_policy='cpu',
pin_memory=True,
strict_ddp_mode=True,
initial_scale=2**5)
elif args.plugin == 'low_level_zero':
plugin = LowLevelZeroPlugin(initial_scale=2**5)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
# Prepare tokenizer and dataloader
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
dataset = NetflixDataset(tokenizer)
dataloader = plugin.prepare_dataloader(dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=netflix_collator)
# Set optimizer
optimizer = HybridAdam(model.parameters(),
lr=(args.learning_rate * world_size),
weight_decay=args.weight_decay)
# Set lr scheduler
total_steps = len(dataloader) * args.num_epoch
num_warmup_steps = int(args.warmup_ratio * total_steps)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=len(dataloader) * args.num_epoch
)
# Set booster
booster = Booster(plugin=plugin, **booster_kwargs)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(model=model,
optimizer=optimizer,
dataloader=dataloader,
lr_scheduler=lr_scheduler)
# Start finetuning
logger.info(f"Start finetuning", ranks=[0])
for epoch in range(args.num_epoch):
train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator)
# Finish training and evaluate
logger.info(f"Finish finetuning", ranks=[0])
booster.save_model(model, args.output_path)
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
if __name__ == "__main__":
main()