mirror of https://github.com/hpcaitech/ColossalAI
82 lines
2.9 KiB
Python
82 lines
2.9 KiB
Python
![]() |
import os
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
import argparse
|
||
|
from packaging import version
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
||
|
from colossalai.logging import disable_existing_loggers
|
||
|
from colossalai.shardformer import ShardConfig
|
||
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
|
||
|
|
||
|
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||
|
TPSIZE = 1
|
||
|
BATCH_SIZE = 4
|
||
|
MAX_INPUT_LEN = 32
|
||
|
MAX_OUTPUT_LEN = 128
|
||
|
|
||
|
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.5')
|
||
|
|
||
|
|
||
|
@parameterize('test_config', [{
|
||
|
'tp_size': TPSIZE,
|
||
|
}])
|
||
|
def run_llama_test(test_config, args):
|
||
|
|
||
|
model_path = args.path
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||
|
tokenizer.pad_token_id = tokenizer.unk_token_id
|
||
|
model = AutoModelForCausalLM.from_pretrained(model_path, pad_token_id=tokenizer.eos_token_id)
|
||
|
model = model.half()
|
||
|
|
||
|
text = ["Introduce London.", "What is the genus of Poodle?"]
|
||
|
input_ids = tokenizer.batch_encode_plus(text, return_tensors='pt', padding=True)
|
||
|
|
||
|
print(input_ids)
|
||
|
|
||
|
shard_config = ShardConfig(enable_tensor_parallelism=True if test_config['tp_size'] > 1 else False,
|
||
|
extra_kwargs={"inference_only": True})
|
||
|
infer_engine = TPInferEngine(model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
|
||
|
|
||
|
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)
|
||
|
outputs = infer_engine.generate(input_ids, **generate_kwargs)
|
||
|
|
||
|
assert outputs is not None
|
||
|
|
||
|
if not dist.is_initialized() or dist.get_rank() == 0:
|
||
|
for o in outputs:
|
||
|
output_text = tokenizer.decode(o)
|
||
|
print(output_text)
|
||
|
|
||
|
|
||
|
def check_llama(rank, world_size, port, args):
|
||
|
disable_existing_loggers()
|
||
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||
|
run_llama_test(args=args)
|
||
|
|
||
|
|
||
|
@rerun_if_address_is_in_use()
|
||
|
@clear_cache_before_run()
|
||
|
def test_llama(args):
|
||
|
spawn(check_llama, args.tp_size, args=args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("-p", "--path", type=str, default = "hpcai-tech/Colossal-LLaMA-2-7b-base", help="Model path")
|
||
|
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
|
||
|
parser.add_argument("-b", "--batch_size", type=int, default=32, help="Maximum batch size")
|
||
|
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
|
||
|
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
|
||
|
parser.add_argument(
|
||
|
"--test_mode", type=str, help="Test mode", default="e2e_test", choices=["e2e_test", "decoder_test"]
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
test_llama(args)
|