You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalChat/examples/community/peft/easy_models.py

94 lines
3.3 KiB

from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from coati.models.generation import generate
from coati.models.utils import log_probs_from_logits
from peft import PeftModel
from torch.nn.modules import Module
from transformers import BloomConfig, BloomForCausalLM
class Actor(Module):
"""
Actor model base class.
Args:
model (nn.Module): Actor Model.
"""
def __init__(self, model: nn.Module) -> None:
super().__init__()
self.model = model
@torch.no_grad()
def generate(
self, input_ids: torch.Tensor, return_action_mask: bool = True, **kwargs
) -> Union[Tuple[torch.LongTensor, torch.LongTensor], Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]]:
sequences = generate(self.model, input_ids, **kwargs)
attention_mask = None
pad_token_id = kwargs.get("pad_token_id", None)
if pad_token_id is not None:
attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device)
if not return_action_mask:
return sequences, attention_mask, None
input_len = input_ids.size(1)
eos_token_id = kwargs.get("eos_token_id", None)
if eos_token_id is None:
action_mask = torch.ones_like(sequences, dtype=torch.bool)
else:
# left padding may be applied, only mask action
action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0
action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input
action_mask[:, :input_len] = False
action_mask = action_mask[:, 1:]
return sequences, attention_mask, action_mask[:, -(sequences.size(1) - input_len) :]
def forward(
self, sequences: torch.LongTensor, num_actions: int, attention_mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Returns action log probs"""
output = self.model(sequences, attention_mask=attention_mask)
logits = output["logits"]
log_probs = log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:])
return log_probs[:, -num_actions:]
def get_base_model(self):
return self.model
class BLOOMActor(Actor):
"""
BLOOM Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_path: str = None,
) -> None:
if pretrained is not None:
model = BloomForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = BloomForCausalLM(config)
else:
model = BloomForCausalLM(BloomConfig())
if lora_path is not None:
model = PeftModel.from_pretrained(model, lora_path)
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model)
def print_trainable_parameters(self):
self.get_base_model().print_trainable_parameters()