You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_legacy/test_pipeline/rpc_test_utils.py

151 lines
5.0 KiB

import argparse
import os
import warnings
import torch
import torch.distributed as dist
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
from torch import nn
from torch._C._distributed_rpc import _is_current_rpc_agent_set
from torch.optim import SGD, Adam, Optimizer, RMSprop
from colossalai.legacy import launch
from colossalai.legacy.pipeline.pipeline_process_group import ppg
from colossalai.logging import disable_existing_loggers
rpc_is_initialized = _is_current_rpc_agent_set
def color_debug(text, prefix=' ', color='blue'):
color = color.upper()
print(getattr(Back, color), prefix, Style.RESET_ALL, text)
class MLP(nn.Module):
def __init__(self, dim: int, layers: int):
super().__init__()
self.layers = torch.nn.ModuleList()
for _ in range(layers):
self.layers.append(nn.Linear(dim, dim, bias=False))
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x.sum()
class DAG_MLP(nn.Module):
def __init__(self, dim: int, layers: int):
super().__init__()
self.layers = torch.nn.ModuleList()
self.dag_layer = nn.Linear(dim, dim, bias=False)
for _ in range(layers):
self.layers.append(nn.Linear(dim, dim, bias=False))
def forward(self, x, y):
for layer in self.layers:
x = layer(x)
y = self.dag_layer(y)
return x.sum(), y.sum()
class RpcTestModel(nn.Module):
def __init__(self, stage_id, actual_stage_num, feat_num, h) -> None:
super().__init__()
self.rank = stage_id
self.is_last_rank = stage_id == actual_stage_num - 1
self.linear_name = f'linear_{stage_id}'
if stage_id == 0:
linear = nn.Linear(feat_num, h)
elif stage_id == actual_stage_num - 1:
linear = nn.Linear(h, 1)
else:
linear = nn.Linear(h, h)
setattr(self, self.linear_name, linear)
def forward(self, x) -> torch.Tensor:
linear: nn.Module = getattr(self, self.linear_name)
out: torch.Tensor = linear(x)
if self.is_last_rank:
out = out.sum()
return out
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--dp_degree', type=int, default=1)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD')
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=str, default=128)
return parser.parse_args()
def pg_parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=4)
parser.add_argument('--dp_degree', type=int, default=2)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--num_worker_threads', type=str, default=128)
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
return parser.parse_args()
def run_worker(rank, args, master_func):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
device = args.device
world_size = args.world_size
dp_degree = args.dp_degree
tp_degree = args.tp_degree
num_worker_threads = args.num_worker_threads
host = args.master_addr
port = args.master_port
backend = 'nccl' if device == 'cuda' else 'gloo'
disable_existing_loggers()
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
ppg.set_global_info(rank=rank,
world_size=world_size,
dp_degree=dp_degree,
tp_degree=tp_degree,
num_worker_threads=num_worker_threads,
device=device)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
master_func(args)
# barrier here
if rpc_is_initialized():
rpc.shutdown()
else:
warnings.warn("RPC has not been initialized")
def rpc_run(args, master_func):
world_size = args.world_size
assert args.num_microbatches >= args.world_size, "num_microbatches cannot be fewer than world_size!"
mp.spawn(run_worker, args=(args, master_func), nprocs=world_size)