ColossalAI/examples/community/roberta/pretraining/pretrain_utils.py

125 lines
4.3 KiB
Python
Raw Normal View History

import logging
import os
import sys
import torch
import transformers
from torch.optim import AdamW
from transformers import (
AutoModelForMaskedLM,
AutoTokenizer,
BertForPreTraining,
GPT2Config,
GPT2LMHeadModel,
RobertaConfig,
RobertaForMaskedLM,
get_linear_schedule_with_warmup,
)
from colossalai.legacy.core import global_context as gpc
from colossalai.nn.lr_scheduler import LinearWarmupLR
from colossalai.nn.optimizer import FusedAdam, HybridAdam
sys.path.append(os.getcwd())
from collections import OrderedDict
import torch.nn as nn
from model.bert import BertForMaskedLM
from model.deberta_v2 import DebertaV2ForMaskedLM
__all__ = ['get_model', 'get_optimizer', 'get_lr_scheduler', 'get_dataloader_for_pretraining']
def get_new_state_dict(state_dict, start_index=13):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[start_index:]
new_state_dict[name] = v
return new_state_dict
class LMModel(nn.Module):
def __init__(self, model, config, args):
super().__init__()
self.checkpoint = args.checkpoint_activations
self.config = config
self.model = model
if self.checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids, token_type_ids=None, attention_mask=None):
# Only return lm_logits
return self.model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
def get_model(args, logger):
if args.mlm == 'bert':
config = transformers.BertConfig.from_json_file(args.bert_config)
model = BertForMaskedLM(config)
elif args.mlm == 'deberta_v2':
config = transformers.DebertaV2Config.from_json_file(args.bert_config)
model = DebertaV2ForMaskedLM(config)
else:
raise Exception("Invalid mlm!")
if len(args.load_pretrain_model) > 0:
assert os.path.exists(args.load_pretrain_model)
# load_checkpoint(args.load_pretrain_model, model, strict=False)
m_state_dict = torch.load(args.load_pretrain_model,
map_location=torch.device(f"cuda:{torch.cuda.current_device()}"))
# new_state_dict = get_new_state_dict(m_state_dict)
model.load_state_dict(m_state_dict,
strict=True) # must insure that every process have identical parameters !!!!!!!
logger.info("load model success")
numel = sum([p.numel() for p in model.parameters()])
if args.checkpoint_activations:
model.gradient_checkpointing_enable()
# model = LMModel(model, config, args)
return config, model, numel
def get_optimizer(model, lr):
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
# configure the weight decay for bert models
optimizer_grouped_parameters = [{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.1
}, {
'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, betas=[0.9, 0.95])
return optimizer
def get_lr_scheduler(optimizer, total_steps, warmup_steps=2000, last_epoch=-1):
# warmup_steps = int(total_steps * warmup_ratio)
lr_scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_steps,
last_epoch=last_epoch)
# lr_scheduler = LinearWarmupLR(optimizer, total_steps=total_steps, warmup_steps=warmup_steps)
return lr_scheduler
def save_ckpt(model, optimizer, lr_scheduler, path, epoch, shard, global_step):
model_path = path + '_pytorch_model.bin'
optimizer_lr_path = path + '.op_lrs'
checkpoint = {}
checkpoint['optimizer'] = optimizer.state_dict()
checkpoint['lr_scheduler'] = lr_scheduler.state_dict()
checkpoint['epoch'] = epoch
checkpoint['shard'] = shard
checkpoint['global_step'] = global_step
model_state = model.state_dict() #each process must run model.state_dict()
if gpc.get_global_rank() == 0:
torch.save(checkpoint, optimizer_lr_path)
torch.save(model_state, model_path)