ColossalAI/examples/community/roberta/pretraining/evaluation.py

77 lines
3.0 KiB
Python
Raw Normal View History

import math
import os
import torch
from nvidia_bert_dataset_provider import NvidiaBertDatasetProvider
from tqdm import tqdm
from utils.global_vars import get_tensorboard_writer, get_timers
def evaluate(model, args, logger, global_step, criterion):
evaluate_dataset_provider = NvidiaBertDatasetProvider(args, evaluate=True)
start_shard = 0
model.eval()
timers = get_timers()
eval_step = 0
eval_loss = 0
cur_loss = 0
world_size = torch.distributed.get_world_size()
with torch.no_grad():
for shard in range(start_shard, len(os.listdir(args.eval_data_path_prefix))):
timers('eval_shard_time').start()
dataset_iterator, total_length = evaluate_dataset_provider.get_shard(shard)
# evaluate_dataset_provider.prefetch_shard(shard + 1)
if torch.distributed.get_rank() == 0:
iterator_data = tqdm(enumerate(dataset_iterator),
total=(total_length // args.eval_micro_batch_size_per_gpu // world_size),
colour='MAGENTA',
smoothing=1)
else:
iterator_data = enumerate(dataset_iterator)
for step, batch_data in iterator_data: #tqdm(enumerate(dataset_iterator), total=(total_length // args.train_micro_batch_size_per_gpu // world_size), colour='cyan', smoothing=1):
# batch_data = pretrain_dataset_provider.get_batch(batch_index)
eval_step += 1
input_ids = batch_data[0].cuda()
attention_mask = batch_data[1].cuda()
token_type_ids = batch_data[2].cuda()
mlm_label = batch_data[3].cuda()
# nsp_label = batch_data[5].cuda()
output = model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
loss = criterion(output.logits, mlm_label) #prediction_scores
evaluate_dataset_provider.prefetch_batch()
eval_loss += loss.float().item()
cur_loss = eval_loss / eval_step
elapsed_time = timers("eval_shard_time").elapsed()
elapsed_time_per_iteration = elapsed_time / eval_step
ppl = math.exp(cur_loss)
if args.wandb and torch.distributed.get_rank() == 0:
tensorboard_log = get_tensorboard_writer()
tensorboard_log.log_eval({
'loss': cur_loss,
'ppl': ppl,
'mins_batch': elapsed_time_per_iteration
}, global_step)
eval_log_str = f'evaluation shard: {shard} | step: {eval_step} | elapsed_time: {elapsed_time / 60 :.3f} minutes ' + \
f'| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {ppl:.7f}'
logger.info(eval_log_str)
logger.info('-' * 100)
logger.info('')
evaluate_dataset_provider.release_shard()
model.train()
return cur_loss