ColossalAI/colossalai/legacy/zero/gemini/tensor_placement_policy.py

140 lines
6.3 KiB
Python
Raw Normal View History

import functools
from abc import ABC, abstractmethod
from time import time
from typing import List, Optional, Type
import torch
from colossalai.legacy.utils.memory import colo_device_memory_capacity
from colossalai.utils import get_current_device
from colossalai.zero.gemini.memory_tracer import MemStatsCollector
from .stateful_tensor import StatefulTensor
from .tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
class TensorPlacementPolicy(ABC):
def __init__(self, device: Optional[torch.device], mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
self.device: Optional[torch.device] = device
self.mem_stats_collector: Optional[MemStatsCollector] = mem_stats_collector
@abstractmethod
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> None:
raise NotImplementedError
class CPUTensorPlacementPolicy(TensorPlacementPolicy):
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
super().__init__(torch.device('cpu'), mem_stats_collector=mem_stats_collector)
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int:
volume = 0
for t in hold_cuda_tensor_list:
colo_model_data_tensor_move_inline(t, self.device)
volume += t.payload.numel() * t.payload.element_size()
return volume, 0
class CUDATensorPlacementPolicy(TensorPlacementPolicy):
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
assert torch.cuda.is_available(), 'Cannot use CUDATensorPlacementPolicy when CUDA is not available'
super().__init__(get_current_device(), mem_stats_collector=mem_stats_collector)
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int:
return 0, 0
class AutoTensorPlacementPolicy(TensorPlacementPolicy):
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
super().__init__(None, mem_stats_collector=mem_stats_collector)
# model data will use 1-self._warmup_non_model_data_ratio CUDA memory in warmup phase
# TODO(ver217): make these args configurable
self._warmup_non_model_data_ratio: float = 0.8
self._steady_cuda_cap_ratio: float = 0.9
def evict_tensors(self,
hold_cuda_tensor_list: List[StatefulTensor],
cuda_demand: int = 0,
warmup: bool = True,
compute_list: List[StatefulTensor] = [],
compute_idx: int = 0,
**kwargs) -> int:
"""
Evict tensors from CUDA device.
Args:
hold_cuda_tensor_list (List[StatefulTensor]): the list of tensor in state of HOLD-like
cuda_demand (int, optional): the volume of data needed on cuda device. Defaults to 0.
warmup (bool, optional): a flag indicates whether in the phase of warmup. Defaults to True.
compute_list (List[StatefulTensor], optional): TODO. Defaults to [].
compute_idx (int, optional): the idx of computing device. Defaults to 0.
Raises:
RuntimeError:
Returns:
int: the volume of memory that is evicted
"""
start = time()
cuda_capacity = colo_device_memory_capacity(get_current_device())
used_cuda_model_data = StatefulTensor.GST_MGR.total_mem['cuda']
if warmup:
# We designate a part of CUDA memory for model data in warmup iterations.
max_cuda_non_model_data_per_period = cuda_capacity * self._warmup_non_model_data_ratio
else:
# max non-model-data cuda memory consumption of this sampling moment and the next sampling moment.
max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage('cuda')
cuda_capacity *= self._steady_cuda_cap_ratio
total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period
avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data
2022-04-25 02:40:14 +00:00
freed_cuda_model_data = 0
end = time()
if avail_cuda_model_data < cuda_demand:
# Move cuda_demand - avail_cuda_model_data volume of tensors
# to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
to_free_tensor_list = hold_cuda_tensor_list
if not warmup:
to_free_tensor_list = self._sort_hold_cuda_tensors(tuple(hold_cuda_tensor_list), compute_idx,
tuple(compute_list))
# print(self._sort_hold_cuda_tensors.cache_info())
end = time()
for t in to_free_tensor_list:
if freed_cuda_model_data >= to_free_cuda_model_data:
break
2022-04-25 02:40:14 +00:00
freed_cuda_model_data += t.payload_size
colo_model_data_tensor_move_inline(t, torch.device('cpu'))
if freed_cuda_model_data < to_free_cuda_model_data:
raise RuntimeError(
f"Adjust layout failed! No enough CUDA memory! Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}"
)
return freed_cuda_model_data, end - start
@staticmethod
@functools.lru_cache(maxsize=None)
def _sort_hold_cuda_tensors(hold_cuda_tensors: tuple, compute_idx: int, compute_list: tuple) -> list:
next_compute_idx = {t: len(compute_list) for t in hold_cuda_tensors}
for i in range(len(compute_list) - 1, compute_idx, -1):
if compute_list[i] in next_compute_idx:
next_compute_idx[compute_list[i]] = i
next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True)
return [t for (t, idx) in next_compute_idx]
class TensorPlacementPolicyFactory:
@staticmethod
def create(policy_name: str) -> Type[TensorPlacementPolicy]:
if policy_name == 'cpu':
return CPUTensorPlacementPolicy
elif policy_name == 'cuda':
return CUDATensorPlacementPolicy
elif policy_name == 'auto':
return AutoTensorPlacementPolicy
else:
raise TypeError(f"Unknown tensor placement policy {policy_name}")