ColossalAI/colossalai/legacy/zero/gemini/paramhooks/_param_hookmgr.py

40 lines
1.2 KiB
Python
Raw Normal View History

import functools
from typing import Callable, List
import torch
class BaseParamHookMgr(object):
def __init__(self, param_list: List[torch.nn.Parameter]) -> None:
r"""
register backward hook on every parameters of module
"""
self._param_list = param_list
self._hook_list = []
def register_backward_hooks(self, hook_call: Callable) -> None:
r"""
The hook_call will be called every time a gradient with respect to the a param in self.param_list
is computed.
The hook should have the following signature:
```
hook(param, grad) -> Tensor or None
```
"""
if not torch.is_grad_enabled():
return # don't register grad hooks if grad isn't enabled
for p in self._param_list:
if p.requires_grad and not hasattr(p, '_base_param_hook'):
handle = p.register_hook(functools.partial(hook_call, p))
p._base_param_hook = handle
def remove_hooks(self) -> None:
"""
Remove hooks from model parameters.
"""
for p in self._param_list:
if p.requires_grad and hasattr(p, '_base_param_hook'):
p._base_param_hook.remove()