mirror of https://github.com/hpcaitech/ColossalAI
156 lines
5.3 KiB
Python
156 lines
5.3 KiB
Python
|
import argparse
|
||
|
import os
|
||
|
import warnings
|
||
|
from typing import Any, Callable, Dict, List, Tuple, Type, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed.rpc as rpc
|
||
|
import torch.multiprocessing as mp
|
||
|
from torch._C._distributed_rpc import _is_current_rpc_agent_set
|
||
|
from torch.futures import Future
|
||
|
|
||
|
from colossalai.initialize import launch
|
||
|
from colossalai.legacy.pipeline.pipeline_process_group import ppg
|
||
|
|
||
|
|
||
|
def pyobj_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = ()) -> Any:
|
||
|
if isinstance(obj, process_types):
|
||
|
return fn(obj)
|
||
|
elif type(obj) is dict:
|
||
|
return {k: pyobj_map(obj[k], fn, process_types) for k in obj}
|
||
|
elif type(obj) is tuple:
|
||
|
return tuple(pyobj_map(o, fn, process_types) for o in obj)
|
||
|
elif type(obj) is list:
|
||
|
return list(pyobj_map(o, fn, process_types) for o in obj)
|
||
|
else:
|
||
|
return obj
|
||
|
|
||
|
|
||
|
def pytree_map(obj: Any, fn: Callable, process_types: Union[Type, Tuple[Type]] = (), map_all: bool = False) -> Any:
|
||
|
"""process object recursively, like pytree
|
||
|
|
||
|
Args:
|
||
|
obj (:class:`Any`): object to process
|
||
|
fn (:class:`Callable`): a function to process subobject in obj
|
||
|
process_types (:class: `type | tuple[type]`): types to determine the type to process
|
||
|
map_all (:class: `bool`): if map_all is True, then any type of element will use fn
|
||
|
|
||
|
Returns:
|
||
|
:class:`Any`: returns have the same structure of `obj` and type in process_types after map of `fn`
|
||
|
"""
|
||
|
if isinstance(obj, dict):
|
||
|
return {k: pytree_map(obj[k], fn, process_types, map_all) for k in obj}
|
||
|
elif isinstance(obj, tuple):
|
||
|
return tuple(pytree_map(o, fn, process_types, map_all) for o in obj)
|
||
|
elif isinstance(obj, list):
|
||
|
return list(pytree_map(o, fn, process_types, map_all) for o in obj)
|
||
|
elif isinstance(obj, process_types):
|
||
|
return fn(obj)
|
||
|
else:
|
||
|
return fn(obj) if map_all else obj
|
||
|
|
||
|
|
||
|
def tensor_shape_list(obj):
|
||
|
return pytree_map(obj, fn=lambda x: x.shape, process_types=torch.Tensor)
|
||
|
|
||
|
|
||
|
def get_batch_lengths(batch):
|
||
|
lengths = []
|
||
|
pytree_map(batch, fn=lambda x: lengths.append(len(x)), process_types=torch.Tensor)
|
||
|
return lengths
|
||
|
|
||
|
|
||
|
def split_batch(batch: Any, start, stop, device: str):
|
||
|
if device == 'cuda':
|
||
|
fn = lambda x: x[start:stop].cuda()
|
||
|
else:
|
||
|
fn = lambda x: x[start:stop]
|
||
|
return pytree_map(batch, fn=fn, process_types=torch.Tensor)
|
||
|
|
||
|
|
||
|
def type_detail(obj):
|
||
|
return pytree_map(obj, lambda x: type(x), map_all=True)
|
||
|
|
||
|
|
||
|
def pytree_filter(fn, obj, process_types):
|
||
|
if obj is None:
|
||
|
return None
|
||
|
|
||
|
filters = []
|
||
|
|
||
|
def condition_append(obj):
|
||
|
if fn(obj):
|
||
|
filters.append(obj)
|
||
|
|
||
|
pytree_map(obj, fn=condition_append, process_types=process_types)
|
||
|
return filters
|
||
|
|
||
|
|
||
|
def get_real_args_kwargs(args_or_kwargs):
|
||
|
args_or_kwargs = pytree_map(args_or_kwargs, fn=lambda x: x.wait(), process_types=Future)
|
||
|
# TODO : combine producer and consumer
|
||
|
# by default, merge all args in the output args or kwargs
|
||
|
if args_or_kwargs is not None:
|
||
|
if isinstance(args_or_kwargs, dict):
|
||
|
pass
|
||
|
else:
|
||
|
flatten_args = []
|
||
|
pytree_map(args_or_kwargs, fn=lambda x: flatten_args.append(x), map_all=True)
|
||
|
args_or_kwargs = flatten_args
|
||
|
|
||
|
return args_or_kwargs
|
||
|
|
||
|
|
||
|
def run_worker(rank, args, master_func):
|
||
|
os.environ['MASTER_ADDR'] = args.master_addr
|
||
|
os.environ['MASTER_PORT'] = args.master_port
|
||
|
|
||
|
device = args.device
|
||
|
world_size = args.world_size
|
||
|
dp_degree = args.dp_degree
|
||
|
tp_degree = args.tp_degree
|
||
|
num_worker_threads = args.num_worker_threads
|
||
|
host = args.master_addr
|
||
|
port = args.master_port
|
||
|
backend = 'nccl' if device == 'cuda' else 'gloo'
|
||
|
|
||
|
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
|
||
|
ppg.set_global_info(rank=rank,
|
||
|
world_size=world_size,
|
||
|
dp_degree=dp_degree,
|
||
|
tp_degree=tp_degree,
|
||
|
num_worker_threads=num_worker_threads,
|
||
|
device=device)
|
||
|
ppg.args = args
|
||
|
# in rpc mode, only rank 0 is needed to be coded
|
||
|
if rank == 0:
|
||
|
master_func(args)
|
||
|
# barrier here
|
||
|
if _is_current_rpc_agent_set():
|
||
|
rpc.shutdown()
|
||
|
else:
|
||
|
warnings.warn("RPC has not been initialized")
|
||
|
|
||
|
|
||
|
def rpc_run(args, master_func):
|
||
|
world_size = args.world_size
|
||
|
mp.spawn(run_worker, args=(args, master_func), nprocs=world_size)
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--epoch', type=int, default=1)
|
||
|
parser.add_argument('--world_size', type=int, default=2)
|
||
|
parser.add_argument('--batch_size', type=int, default=16)
|
||
|
parser.add_argument('--dp_degree', type=int, default=1)
|
||
|
parser.add_argument('--tp_degree', type=int, default=1)
|
||
|
parser.add_argument('--num_microbatches', type=int, default=2)
|
||
|
parser.add_argument('--chunk', type=int, default=1)
|
||
|
parser.add_argument('--use_checkpoint', action='store_true')
|
||
|
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD')
|
||
|
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
|
||
|
parser.add_argument('--master_addr', type=str, default='localhost')
|
||
|
parser.add_argument('--master_port', type=str, default='29020')
|
||
|
parser.add_argument('--num_worker_threads', type=int, default=128)
|
||
|
return parser.parse_args()
|