Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

128 lines
5.6 KiB

from math import pow
import numpy as np
def get_submesh_choices(num_hosts, num_devices_per_host, mode="new"):
submesh_choices = []
i = 1
p = -1
while i <= num_devices_per_host:
i *= 2
p += 1
assert pow(2, p) == num_devices_per_host, ("Only supports the cases where num_devices_per_host is power of two, "
f"while now num_devices_per_host = {num_devices_per_host}")
if mode == "alpa":
for i in range(p + 1):
submesh_choices.append((1, pow(2, i)))
for i in range(2, num_hosts + 1):
submesh_choices.append((i, num_devices_per_host))
elif mode == "new":
for i in range(p // 2 + 1):
for j in range(i, p - i + 1):
submesh_choices.append((pow(2, i), pow(2, j)))
return submesh_choices
def alpa_dp_impl(num_layers, num_devices, num_microbatches, submesh_choices, compute_cost, max_stage_cost,
best_configs):
"""Implementation of Alpa DP for pipeline strategy
Paper reference: https://www.usenix.org/system/files/osdi22-zheng-lianmin.pdf
Arguments:
num_layers: K
num_devices: N*M
num_microbatches: B
submesh_choices: List[(n_i,m_i)]
compute_cost: t_intra
"""
# For f, layer ID start from 0
# f[#pipeline stages, layer id that is currently being considered, number of devices used]
f = np.full((num_layers + 1, num_layers + 1, num_devices + 1), np.inf, dtype=np.float32)
f_stage_max = np.full((num_layers + 1, num_layers + 1, num_devices + 1), 0.0, dtype=np.float32)
f_argmin = np.full((num_layers + 1, num_layers + 1, num_devices + 1, 3), -1, dtype=np.int32)
f[0, num_layers, 0] = 0
for s in range(1, num_layers + 1):
for k in range(num_layers - 1, -1, -1):
for d in range(1, num_devices + 1):
for m, submesh in enumerate(submesh_choices):
n_submesh_devices = np.prod(np.array(submesh))
if n_submesh_devices <= d:
# TODO: [luzgh]: Why alpa needs max_n_succ_stages? Delete.
# if s - 1 <= max_n_succ_stages[i, k - 1, m, n_config]:
# ...
for i in range(num_layers, k, -1):
stage_cost = compute_cost[k, i, m]
new_cost = f[s - 1, k, d - n_submesh_devices] + stage_cost
if (stage_cost <= max_stage_cost and new_cost < f[s, k, d]):
f[s, k, d] = new_cost
f_stage_max[s, k, d] = max(stage_cost, f_stage_max[s - 1, i, d - n_submesh_devices])
f_argmin[s, k, d] = (i, m, best_configs[k, i, m])
best_s = -1
best_total_cost = np.inf
for s in range(1, num_layers + 1):
if f[s, 0, num_devices] < best_total_cost:
best_s = s
best_total_cost = f[s, 0, num_devices]
if np.isinf(best_total_cost):
return np.inf, None
total_cost = f[best_s, 0, num_devices] + (num_microbatches - 1) * f_stage_max[best_s, 0, num_devices]
current_s = best_s
current_layer = 0
current_devices = num_devices
res = []
while current_s > 0 and current_layer < num_layers and current_devices > 0:
next_start_layer, submesh_choice, autosharding_choice = (f_argmin[current_s, current_layer, current_devices])
assert next_start_layer != -1 and current_devices != -1
res.append(((current_layer, next_start_layer), submesh_choice, autosharding_choice))
current_s -= 1
current_layer = next_start_layer
current_devices -= np.prod(np.array(submesh_choices[submesh_choice]))
assert (current_s == 0 and current_layer == num_layers and current_devices == 0)
return total_cost, res
def alpa_dp(num_layers,
num_devices,
num_microbatches,
submesh_choices,
num_autosharding_configs,
compute_cost,
gap=1e-6):
"""Alpa auto stage dynamic programming.
Code reference: https://github.com/alpa-projects/alpa/blob/main/alpa/pipeline_parallel/stage_construction.py
Arguments:
submesh_choices: List[(int,int)]
num_autosharding_configs: Max number of t_intra(start_layer, end_layer, LogicalMesh)
compute_cost: np.array(num_layers,num_layers,num_submesh_choices,num_autosharding_configs)
"""
assert np.shape(compute_cost) == (num_layers, num_layers, len(submesh_choices),
num_autosharding_configs), "Cost shape wrong."
all_possible_stage_costs = np.sort(np.unique(compute_cost))
best_cost = np.inf
best_solution = None
last_max_stage_cost = 0.0
# TODO: [luzgh]: Why alpa needs the num_autosharding_configs dimension in compute_cost?
# In dp_impl it seems the argmin n_config will be chosen. Just amin here.
best_configs = np.argmin(compute_cost, axis=3)
best_compute_cost = np.amin(compute_cost, axis=3)
assert len(all_possible_stage_costs), "no solution in auto stage construction."
for max_stage_cost in all_possible_stage_costs:
if max_stage_cost * num_microbatches >= best_cost:
break
if max_stage_cost - last_max_stage_cost < gap:
continue
cost, solution = alpa_dp_impl(num_layers, num_devices, num_microbatches, submesh_choices, best_compute_cost,
max_stage_cost, best_configs)
if cost < best_cost:
best_cost = cost
best_solution = solution
last_max_stage_cost = max_stage_cost
return best_cost, best_solution