ColossalAI/tests/test_tensor/test_linear_tp.py

65 lines
2.3 KiB
Python
Raw Normal View History

2022-04-24 05:43:12 +00:00
import torch
from colossalai.tensor import ColoTensor, distspec
2022-04-24 05:43:12 +00:00
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from colossalai.testing import rerun_if_address_is_in_use
2022-04-24 05:43:12 +00:00
from colossalai.utils import free_port
from colossalai.tensor import ColoTensorSpec, ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup
from _utils import tensor_equal, tensor_shard_equal
def init_1d_row(weight, bias, pg: ProcessGroup):
spec = (distspec.shard([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
weight.set_tensor_spec(*spec)
def init_1d_col(weight, bias, pg: ProcessGroup):
spec = (distspec.shard([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
weight.set_tensor_spec(*spec)
bias.set_tensor_spec(*spec)
def run_with_spec(spec_init_func):
pg = ProcessGroup(tp_degree=torch.distributed.get_world_size())
model = torch.nn.Linear(4, 8).cuda()
weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg))
bias = ColoTensor(torch.nn.Parameter(model.bias.detach()), ColoTensorSpec(pg))
spec_init_func(weight, bias, pg)
x = torch.rand(2, 4).cuda()
out = model(x)
colo_out = F.linear(x, weight, bias)
colo_out = colo_out.to_replicate()
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
2022-04-27 06:13:55 +00:00
out.backward(grad)
colo_out.backward(grad)
assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size())
assert tensor_shard_equal(model.bias.grad, bias.grad, pg.tp_local_rank(), pg.tp_world_size())
2022-04-24 05:43:12 +00:00
2022-04-24 05:43:12 +00:00
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_with_spec(init_1d_row)
run_with_spec(init_1d_col)
2022-04-24 05:43:12 +00:00
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
2022-04-24 05:43:12 +00:00
@rerun_if_address_is_in_use()
def test_linear_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_linear_1d(4)