You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/csrc/multi_tensor_sgd_kernel.cu

282 lines
9.0 KiB

3 years ago
// modified from https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_sgd_kernel.cu
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
#include "multi_tensor_apply.cuh"
#include "compat.h"
#include <assert.h>
#include <cuda_runtime.h>
#define BLOCK_SIZE 512
#define ILP 4
/**
* Perform fused SGD on multiple buffers
* N: number of tensors
* tl[0] : gradients
* tl[1] : weights
* tl[2] : momentum buffers
* tl[3] : fp16 weights (if appropriate)
* wd : weight_decay (scalar)
* momentum : momentum (scalar)
* dampening : momentum dampening (scalar)
* lr : learning rate (scalar)
* nesterov : enable nesterov (bool)
* first run : necessary for proper momentum handling & init
* wd_after_momentum : apply weight decay _after_ momentum instead of before
**/
template <int N, typename T_grad, typename T_weight>
struct SGDFunctor
{
__device__ __forceinline__ void operator()(
int chunk_size,
volatile int *noop_gmem,
TensorListMetadata<N> &tl,
float wd,
float momentum,
float dampening,
float lr,
bool nesterov,
bool first_run,
bool wd_after_momentum,
float scale)
{
// Early exit if we don't need to do anything
if (*noop_gmem)
return;
int tensor_loc = tl.block_to_tensor[blockIdx.x];
int chunk_idx = tl.block_to_chunk[blockIdx.x];
int n = tl.sizes[tensor_loc];
T_grad *grad_in = (T_grad *)tl.addresses[0][tensor_loc];
grad_in += chunk_idx * chunk_size;
T_weight *weight_in = (T_weight *)tl.addresses[1][tensor_loc];
weight_in += chunk_idx * chunk_size;
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc];
mom_in += chunk_idx * chunk_size;
at::Half *model_weights_out = nullptr;
if (N == 4)
{
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc];
model_weights_out += chunk_idx * chunk_size;
}
n -= chunk_idx * chunk_size;
// Non-divergent exit condition for the __syncthreads
float incoming_grads[ILP];
float incoming_weights[ILP];
float incoming_moms[ILP];
for (int i_start = 0;
i_start < n && i_start < chunk_size;
i_start += blockDim.x * ILP)
{
#pragma unroll
for (int ii = 0; ii < ILP; ii++)
{
incoming_grads[ii] = 0;
incoming_weights[ii] = 0;
incoming_moms[ii] = 0;
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size)
{
incoming_grads[ii] = static_cast<float>(grad_in[i]) * scale;
incoming_weights[ii] = static_cast<float>(weight_in[i]);
incoming_moms[ii] = static_cast<float>(mom_in[i]);
}
}
// note for clarification to future michael:
// From a pure memory dependency perspective, there's likely no point unrolling
// the write loop, since writes just fire off once their LDGs arrive.
// Put another way, the STGs are dependent on the LDGs, but not on each other.
// There is still compute ILP benefit from unrolling the loop though.
#pragma unroll
for (int ii = 0; ii < ILP; ii++)
{
int i = i_start + threadIdx.x + ii * blockDim.x;
if (i < n && i < chunk_size)
{
// apply weight decay before momentum if necessary
if (wd != 0.f && !wd_after_momentum)
incoming_grads[ii] += wd * incoming_weights[ii];
if (momentum != 0.f)
{
if (!first_run)
incoming_moms[ii] = incoming_moms[ii] * momentum + (1.f - dampening) * incoming_grads[ii];
else // initialize momentums to current incoming grads
incoming_moms[ii] = incoming_grads[ii];
if (nesterov)
incoming_grads[ii] += momentum * incoming_moms[ii];
else
incoming_grads[ii] = incoming_moms[ii];
}
// Apply WD after momentum if desired
if (wd != 0.f && wd_after_momentum)
incoming_grads[ii] += wd * incoming_weights[ii];
// adjust the weight and write out
weight_in[i] += (-lr * incoming_grads[ii]);
// if necessary, write out an fp16 copy of the weights
if (N == 4)
model_weights_out[i] = static_cast<at::Half>(weight_in[i]);
// also write out the new momentum
if (momentum != 0.f)
mom_in[i] = incoming_moms[ii];
}
}
}
}
};
void multi_tensor_sgd_cuda(
int chunk_size,
at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float wd,
float momentum,
float dampening,
float lr,
bool nesterov,
bool first_run,
bool wd_after_momentum,
float scale)
{
auto num_tensors = tensor_lists.size();
auto grad_type = tensor_lists[0][0].scalar_type();
auto weight_type = tensor_lists[1][0].scalar_type();
if (num_tensors == 4)
for (int i = 0; i < tensor_lists[3].size(); i++)
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half,
"Additional output tensors should always be fp16.");
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(), "expected noop flag to be on the same device as tensors");
// We have 3 possibilities to handle here, in terms of
// grad_type, param_type, momentum_type, requires_fp16_copy
// 1. fp16, fp16, fp16, No
// 2. fp32, fp32, fp32, No
// 3. fp16, fp32, fp32, Yes
// 4. fp32, fp32, fp32, Yes // this is the materialize_master_grads=True case
// It's easier to hardcode these possibilities than to use
// switches etc. to handle the cross-product of cases where
// we don't want the majority of them.
// Case 1. fp16, fp16, fp16, No
if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Half &&
num_tensors == 3)
{
multi_tensor_apply<3>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<3, at::Half, at::Half>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale);
}
// Case 2. fp16, fp32, fp32, No
// else if (grad_type == at::ScalarType::Half &&
// weight_type == at::ScalarType::Float &&
// num_tensors == 3) {
// multi_tensor_apply<3>(
// BLOCK_SIZE,
// chunk_size,
// noop_flag,
// tensor_lists,
// SGDFunctor<3, at::Half, float>(),
// wd,
// momentum,
// dampening,
// lr,
// nesterov,
// first_run,
// wd_after_momentum);
// }
// Case 2. fp32, fp32, fp32, No
else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float &&
num_tensors == 3)
{
multi_tensor_apply<3>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<3, float, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale);
}
// Case 3. fp16, fp32, fp32, Yes
else if (grad_type == at::ScalarType::Half &&
weight_type == at::ScalarType::Float &&
num_tensors == 4)
{
multi_tensor_apply<4>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<4, at::Half, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale);
}
// Case 4. fp32, fp32, fp32, Yes
else if (grad_type == at::ScalarType::Float &&
weight_type == at::ScalarType::Float &&
num_tensors == 4)
{
multi_tensor_apply<4>(
BLOCK_SIZE,
chunk_size,
noop_flag,
tensor_lists,
SGDFunctor<4, float, float>(),
wd,
momentum,
dampening,
lr,
nesterov,
first_run,
wd_after_momentum,
scale);
}
else
{
AT_ERROR("multi_tensor_sgd only supports some combinations of gradient & weight types. Given: ",
"gradient: ", grad_type, ", weight: ", weight_type, ", num_lists: ", num_tensors);
}
AT_CUDA_CHECK(cudaGetLastError());
}