2021-12-27 07:04:32 +00:00
|
|
|
import math
|
|
|
|
from typing import Callable
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from colossalai.nn import init as init
|
|
|
|
from colossalai.registry import LAYERS
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
from torch import Tensor, dtype
|
|
|
|
from torch import nn as nn
|
|
|
|
|
2021-12-29 15:32:10 +00:00
|
|
|
from ..utils import to_2tuple
|
2022-01-07 07:08:36 +00:00
|
|
|
from colossalai.context import seed
|
2021-12-27 07:04:32 +00:00
|
|
|
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
|
|
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
|
|
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
|
|
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
|
|
|
'survival rate' as the argument.
|
|
|
|
"""
|
|
|
|
if drop_prob == 0. or not training:
|
|
|
|
return x
|
|
|
|
keep_prob = 1 - drop_prob
|
|
|
|
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
|
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
|
|
|
random_tensor.floor_() # binarize
|
|
|
|
output = x.div(keep_prob) * random_tensor
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
|
|
|
|
"""
|
|
|
|
def __init__(self, drop_prob=None):
|
|
|
|
super(DropPath, self).__init__()
|
|
|
|
self.drop_prob = drop_prob
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return drop_path(x, self.drop_prob, self.training)
|
|
|
|
|
|
|
|
|
2022-01-07 07:08:36 +00:00
|
|
|
class WrappedDropout(nn.Module):
|
|
|
|
"""Same as torch.nn.Dropout. But it is wrapped with the context of seed manager.
|
|
|
|
"""
|
|
|
|
def __init__(self, p: float = 0.5, inplace: bool = False, mode=None):
|
|
|
|
super().__init__()
|
|
|
|
if p < 0 or p > 1:
|
|
|
|
raise ValueError("dropout probability has to be between 0 and 1, "
|
|
|
|
"but got {}".format(p))
|
|
|
|
self.p = p
|
|
|
|
self.inplace = inplace
|
|
|
|
if mode is None:
|
|
|
|
self.func = self.nonefunc
|
|
|
|
else:
|
|
|
|
self.func = self.normalfunc
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
def nonefunc(self, inputs):
|
|
|
|
return F.dropout(inputs, self.p, self.training, self.inplace)
|
|
|
|
|
|
|
|
def normalfunc(self, inputs):
|
|
|
|
with seed(self.mode):
|
|
|
|
return F.dropout(inputs, self.p, self.training, self.inplace)
|
|
|
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
return self.func(inputs)
|
|
|
|
|
|
|
|
|
|
|
|
class WrappedDropPath(nn.Module):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
Here, it is wrapped with the context of seed manager.
|
|
|
|
"""
|
|
|
|
def __init__(self, p: float = 0., mode=None):
|
|
|
|
super().__init__()
|
|
|
|
self.p = p
|
|
|
|
self.mode = mode
|
|
|
|
if self.mode is None:
|
|
|
|
self.func = self.nonefunc
|
|
|
|
else:
|
|
|
|
self.func = self.normalfunc
|
|
|
|
self.mode = mode
|
|
|
|
|
|
|
|
def nonefunc(self, inputs):
|
|
|
|
return drop_path(inputs, self.p, self.training)
|
|
|
|
|
|
|
|
def normalfunc(self, inputs):
|
|
|
|
with seed(self.mode):
|
|
|
|
return drop_path(inputs, self.p, self.training)
|
|
|
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
return self.func(inputs)
|
|
|
|
|
|
|
|
|
2021-12-27 07:04:32 +00:00
|
|
|
@LAYERS.register_module
|
|
|
|
class VanillaPatchEmbedding(nn.Module):
|
|
|
|
""" 2D Image to Patch Embedding
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
img_size: int,
|
|
|
|
patch_size: int,
|
|
|
|
in_chans: int,
|
|
|
|
embed_size: int,
|
|
|
|
dtype: dtype = None,
|
|
|
|
flatten: bool = True,
|
|
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
|
|
|
position_embed_initializer: Callable = init.zeros_()):
|
|
|
|
super().__init__()
|
|
|
|
img_size = to_2tuple(img_size)
|
|
|
|
patch_size = to_2tuple(patch_size)
|
|
|
|
self.img_size = img_size
|
|
|
|
self.patch_size = patch_size
|
|
|
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
|
|
|
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
|
|
|
self.flatten = flatten
|
|
|
|
|
|
|
|
self.weight = nn.Parameter(
|
|
|
|
torch.empty((embed_size, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype))
|
|
|
|
self.bias = nn.Parameter(torch.empty(embed_size, device=get_current_device(), dtype=dtype))
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_size))
|
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, embed_size))
|
|
|
|
|
|
|
|
self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer)
|
|
|
|
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer):
|
|
|
|
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(self.weight)
|
|
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
|
|
position_embed_initializer(self.pos_embed)
|
|
|
|
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
|
|
B, C, H, W = input_.shape
|
|
|
|
assert H == self.img_size[0] and W == self.img_size[1], \
|
|
|
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
|
|
|
output = F.conv2d(input_, self.weight, self.bias, stride=self.patch_size)
|
|
|
|
if self.flatten:
|
|
|
|
output = output.flatten(2).transpose(1, 2) # BCHW -> BNC
|
|
|
|
|
|
|
|
cls_token = self.cls_token.expand(output.shape[0], -1, -1)
|
|
|
|
output = torch.cat((cls_token, output), dim=1)
|
|
|
|
output = output + self.pos_embed
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
@LAYERS.register_module
|
|
|
|
class VanillaClassifier(nn.Module):
|
|
|
|
def __init__(self,
|
|
|
|
in_features: int,
|
|
|
|
num_classes: int,
|
|
|
|
weight: nn.Parameter = None,
|
|
|
|
bias: bool = True,
|
|
|
|
dtype: dtype = None,
|
|
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
|
|
|
super().__init__()
|
|
|
|
self.in_features = in_features
|
|
|
|
self.num_classes = num_classes
|
|
|
|
|
|
|
|
if weight is not None:
|
|
|
|
self.weight = weight
|
|
|
|
self.has_weight = False
|
|
|
|
else:
|
|
|
|
self.weight = nn.Parameter(
|
|
|
|
torch.empty(self.num_classes, self.in_features, device=get_current_device(), dtype=dtype))
|
|
|
|
self.has_weight = True
|
|
|
|
if bias:
|
|
|
|
self.bias = nn.Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype))
|
|
|
|
else:
|
|
|
|
self.bias = None
|
|
|
|
|
|
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
|
|
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer):
|
|
|
|
fan_in, fan_out = self.in_features, self.num_classes
|
|
|
|
|
|
|
|
if self.has_weight:
|
|
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
|
|
|
|
|
|
if self.bias is not None:
|
|
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
|
|
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
|
|
return F.linear(input_, self.weight, self.bias)
|