ColossalAI/tests/test_autochunk/openfold/triangular_multiplicative_u...

128 lines
3.7 KiB
Python
Raw Normal View History

2022-12-29 03:48:11 +00:00
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partialmethod
from typing import Optional
import torch
import torch.nn as nn
2023-01-06 03:39:26 +00:00
from .primitives import Linear, LayerNorm
from .tensor_utils import permute_final_dims
2022-12-29 03:48:11 +00:00
class TriangleMultiplicativeUpdate(nn.Module):
"""
Implements Algorithms 11 and 12.
"""
def __init__(self, c_z, c_hidden, _outgoing=True):
"""
Args:
c_z:
Input channel dimension
c:
Hidden channel dimension
"""
super(TriangleMultiplicativeUpdate, self).__init__()
self.c_z = c_z
self.c_hidden = c_hidden
self._outgoing = _outgoing
self.linear_a_p = Linear(self.c_z, self.c_hidden)
self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating")
self.linear_b_p = Linear(self.c_z, self.c_hidden)
self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating")
self.linear_g = Linear(self.c_z, self.c_z, init="gating")
self.linear_z = Linear(self.c_hidden, self.c_z, init="final")
self.layer_norm_in = LayerNorm(self.c_z)
self.layer_norm_out = LayerNorm(self.c_hidden)
self.sigmoid = nn.Sigmoid()
def _combine_projections(self,
a: torch.Tensor,
b: torch.Tensor,
) -> torch.Tensor:
raise NotImplementedError("This method needs to be overridden")
def forward(self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
Args:
x:
[*, N_res, N_res, C_z] input tensor
mask:
[*, N_res, N_res] input mask
Returns:
[*, N_res, N_res, C_z] output tensor
"""
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
z = self.layer_norm_in(z)
a = self.linear_a_p(z) * self.sigmoid(self.linear_a_g(z))
a = a * mask
b = self.linear_b_p(z) * self.sigmoid(self.linear_b_g(z))
b = b * mask
x = self._combine_projections(a, b)
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.sigmoid(self.linear_g(z))
z = x * g
return z
class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate):
"""
Implements Algorithm 11.
"""
def _combine_projections(self,
a: torch.Tensor, # [*, N_i, N_k, C]
b: torch.Tensor, # [*, N_j, N_k, C]
):
# [*, C, N_i, N_j]
p = torch.matmul(
permute_final_dims(a, (2, 0, 1)),
permute_final_dims(b, (2, 1, 0)),
)
# [*, N_i, N_j, C]
return permute_final_dims(p, (1, 2, 0))
class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate):
"""
Implements Algorithm 12.
"""
def _combine_projections(self,
a: torch.Tensor, # [*, N_k, N_i, C]
b: torch.Tensor, # [*, N_k, N_j, C]
):
# [*, C, N_i, N_j]
p = torch.matmul(
permute_final_dims(a, (2, 1, 0)),
permute_final_dims(b, (2, 0, 1)),
)
# [*, N_i, N_j, C]
return permute_final_dims(p, (1, 2, 0))