ColossalAI/tests/test_autochunk/evoformer/evoformer.py

60 lines
1.6 KiB
Python
Raw Normal View History

2022-11-02 07:12:08 +00:00
import torch
import torch.nn as nn
from .msa import MSAStack
from .ops import OutProductMean
from .triangle import PairStack
2022-12-21 07:01:03 +00:00
def print_memory(init_mem, text=None):
now_mem = torch.cuda.memory_allocated() / 1024 ** 2 - init_mem
max_mem = torch.cuda.max_memory_allocated() / 1024 ** 2 - init_mem
print("%s now:%.2f max:%.2f" % ("" if text is None else text, now_mem, max_mem))
torch.cuda.reset_peak_memory_stats()
2022-11-02 07:12:08 +00:00
class EvoformerBlock(nn.Module):
def __init__(self, d_node, d_pair):
super(EvoformerBlock, self).__init__()
self.msa_stack = MSAStack(d_node, d_pair, p_drop=0.15)
self.communication = OutProductMean(n_feat=d_node, n_feat_out=d_pair, n_feat_proj=32)
self.pair_stack = PairStack(d_pair=d_pair)
def forward(self, node, pair):
2022-12-21 07:01:03 +00:00
node = self.msa_stack(node, pair)
2022-11-02 07:12:08 +00:00
pair = pair + self.communication(node)
2022-12-21 07:01:03 +00:00
pair = self.pair_stack(pair)
2022-11-02 07:12:08 +00:00
return node, pair
class Evoformer(nn.Module):
def __init__(self, d_node, d_pair):
super(Evoformer, self).__init__()
self.blocks = nn.ModuleList()
2022-11-02 07:49:25 +00:00
for _ in range(1):
2022-11-02 07:12:08 +00:00
self.blocks.append(EvoformerBlock(d_node, d_pair))
def forward(self, node, pair):
for b in self.blocks:
node, pair = b(node, pair)
return node, pair
2022-11-02 07:49:25 +00:00
def evoformer_tiny():
return Evoformer(d_node=64, d_pair=32)
2022-11-02 07:12:08 +00:00
def evoformer_base():
return Evoformer(d_node=256, d_pair=128)
def evoformer_large():
return Evoformer(d_node=512, d_pair=256)
__all__ = ['Evoformer', 'evoformer_base', 'evoformer_large']