ColossalAI/colossalai/gemini/chunk/utils.py

60 lines
1.9 KiB
Python
Raw Normal View History

from time import time
from typing import Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.gemini.chunk import ChunkManager
from colossalai.gemini.chunk.search_utils import search_chunk_configuration
from colossalai.utils import is_ddp_ignored
def init_chunk_manager(model: nn.Module,
init_device: Optional[torch.device] = None,
hidden_dim: Optional[int] = None,
search_range_mb: Optional[float] = None,
min_chunk_size_mb: Optional[float] = None,
filter_exlarge_params: Optional[bool] = None) -> ChunkManager:
kwargs_dict = dict()
if hidden_dim:
search_interval_byte = hidden_dim
else:
search_interval_byte = 1024 # 1kb
kwargs_dict["search_interval_byte"] = search_interval_byte
if search_range_mb:
kwargs_dict["search_range_mb"] = search_range_mb
if min_chunk_size_mb:
kwargs_dict["min_chunk_size_mb"] = min_chunk_size_mb
if filter_exlarge_params:
kwargs_dict["filter_exlarge_params"] = filter_exlarge_params
params_sizes = [p.numel() for p in model.parameters() if not is_ddp_ignored(p)]
total_size = sum(params_sizes) / 1024**2
dist.barrier()
begin = time()
config_dict, wasted_size = search_chunk_configuration(model, **kwargs_dict)
dist.barrier()
end = time()
span_s = end - begin
wasted_size /= 1024**2
if dist.get_rank() == 0:
print("searching chunk configuration is completed in {:.2f} s.\n".format(span_s),
"used number: {:.2f} MB, wasted number: {:.2f} MB\n".format(total_size, wasted_size),
"total wasted percentage is {:.2f}%".format(100 * wasted_size / (total_size + wasted_size)),
sep='',
flush=True)
dist.barrier()
chunk_manager = ChunkManager(config_dict, init_device)
return chunk_manager