mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.4 KiB
83 lines
2.4 KiB
10 months ago
|
import hashlib
|
||
|
import os
|
||
|
from abc import ABC, abstractmethod
|
||
|
from typing import Union
|
||
|
|
||
|
__all__ = ["_Extension"]
|
||
|
|
||
|
|
||
|
class _Extension(ABC):
|
||
|
def __init__(self, name: str, support_aot: bool, support_jit: bool, priority: int = 1):
|
||
|
self._name = name
|
||
|
self._support_aot = support_aot
|
||
|
self._support_jit = support_jit
|
||
|
self.priority = priority
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return self._name
|
||
|
|
||
|
@property
|
||
|
def support_aot(self):
|
||
|
return self._support_aot
|
||
|
|
||
|
@property
|
||
|
def support_jit(self):
|
||
|
return self._support_jit
|
||
|
|
||
|
@staticmethod
|
||
|
def get_jit_extension_folder_path():
|
||
|
"""
|
||
|
Kernels which are compiled during runtime will be stored in the same cache folder for reuse.
|
||
|
The folder is in the path ~/.cache/colossalai/torch_extensions/<cache-folder>.
|
||
|
The name of the <cache-folder> follows a common format:
|
||
|
torch<torch_version_major>.<torch_version_minor>_<device_name><device_version>-<hash>
|
||
|
|
||
|
The <hash> suffix is the hash value of the path of the `colossalai` file.
|
||
|
"""
|
||
|
import torch
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.accelerator import get_accelerator
|
||
|
|
||
|
# get torch version
|
||
|
torch_version_major = torch.__version__.split(".")[0]
|
||
|
torch_version_minor = torch.__version__.split(".")[1]
|
||
|
|
||
|
# get device version
|
||
|
device_name = get_accelerator().name
|
||
|
device_version = get_accelerator().get_version()
|
||
|
|
||
|
# use colossalai's file path as hash
|
||
|
hash_suffix = hashlib.sha256(colossalai.__file__.encode()).hexdigest()
|
||
|
|
||
|
# concat
|
||
|
home_directory = os.path.expanduser("~")
|
||
|
extension_directory = f".cache/colossalai/torch_extensions/torch{torch_version_major}.{torch_version_minor}_{device_name}-{device_version}-{hash_suffix}"
|
||
|
cache_directory = os.path.join(home_directory, extension_directory)
|
||
|
return cache_directory
|
||
|
|
||
|
@abstractmethod
|
||
|
def is_hardware_available(self) -> bool:
|
||
|
"""
|
||
|
Check if the hardware required by the kernel is available.
|
||
|
"""
|
||
|
|
||
|
@abstractmethod
|
||
|
def assert_hardware_compatible(self) -> bool:
|
||
|
"""
|
||
|
Check if the hardware required by the kernel is compatible.
|
||
|
"""
|
||
|
|
||
|
@abstractmethod
|
||
|
def build_aot(self) -> Union["CppExtension", "CUDAExtension"]:
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def build_jit(self) -> None:
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def load(self):
|
||
|
pass
|