You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_booster/test_plugin/test_gemini_plugin.py

122 lines
5.0 KiB

import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin
from colossalai.nn.optimizer import HybridAdam
from colossalai.tensor.colo_parameter import ColoParameter
from colossalai.testing import rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def check_gemini_plugin(early_stop: bool = True):
"""check gemini plugin over model zoo
Args:
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
"""
passed_models = []
failed_info = {} # (model_name, error) pair
for name, (model_fn, data_gen_fn, output_transform_fn, _) in model_zoo.items():
# These models lead to CUDA error
if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'timm_resmlp',
'timm_gmixer_12_224', 'timm_gmlp_b16_224', 'timm_mixer_b16_224', 'timm_convnext'):
continue
# These models are not compatible with gemini
if name in [
'diffusers_clip_vision_model', 'timm_resnet', 'timm_beit', 'timm_beitv2', 'timm_eca_nfnet',
'timm_efficientformer', 'timm_hrnet_w18_small', 'timm_nf_ecaresnet101', 'timm_nf_regnet_b0',
'timm_skresnet18', 'timm_wide_resnet50_2', 'timm_convit', 'timm_dm_nfnet', 'timm_swin_transformer',
'torchaudio_conformer', 'torchaudio_deepspeech', 'torchaudio_wavernn', 'torchaudio_tacotron',
'deepfm_interactionarch', 'deepfm_simpledeepfmnn', 'dlrm', 'dlrm_interactionarch',
'torchvision_googlenet', 'torchvision_inception_v3', 'torchvision_mobilenet_v3_small',
'torchvision_resnet18', 'torchvision_resnext50_32x4d', 'torchvision_wide_resnet50_2',
'torchvision_vit_b_16', 'torchvision_convnext_base', 'torchvision_swin_s', 'transformers_albert',
'transformers_albert_for_pretraining', 'transformers_bert', 'transformers_bert_for_pretraining',
'transformers_gpt_double_heads', 'torchaudio_hubert_base', 'torchaudio_wav2vec2_base',
'transformers_t5_for_conditional_generation', 'transformers_t5', 'transformers_t5_encoder_model'
]:
continue
try:
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, max_norm=1.0, initial_scale=2**5)
booster = Booster(plugin=plugin)
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
for n, p in model.named_parameters():
assert isinstance(p, ColoParameter), f'{n} is not a ColoParameter'
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
passed_models.append(name)
del booster, plugin, model, optimizer, criterion, data, output, loss
except Exception as e:
failed_info[name] = e
if early_stop:
raise e
torch.cuda.empty_cache()
if dist.get_rank() == 0:
print(f'Passed models({len(passed_models)}): {passed_models}\n\n')
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
def check_dataloader_sharding():
plugin = GeminiPlugin()
# create a custom dasetset with 0 to 10
dataset = torch.utils.data.TensorDataset(torch.arange(0, 10))
train_dataloader = plugin.prepare_train_dataloader(dataset, batch_size=2)
# get the first batch of data
batch = next(iter(train_dataloader))[0].cuda()
is_rank_0 = dist.get_rank() == 0
if is_rank_0:
batch_to_compare = batch.clone()
else:
batch_to_compare = batch
# pass to the rank 1 value to rank 0
dist.broadcast(batch_to_compare, src=1)
# compare on rank 0
if is_rank_0:
assert not torch.equal(batch,
batch_to_compare), 'Same number was found across ranks but expected it to be different'
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
check_dataloader_sharding()
check_gemini_plugin(early_stop=early_stop)
@rerun_if_address_is_in_use()
def test_gemini_plugin(early_stop: bool = True):
spawn(run_dist, 2, early_stop=early_stop)
if __name__ == '__main__':
test_gemini_plugin(early_stop=False)