mirror of https://github.com/hpcaitech/ColossalAI
22 lines
785 B
Python
22 lines
785 B
Python
|
from colossalai.device.device_mesh import DeviceMesh
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def test_device_mesh():
|
||
|
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
|
||
|
mesh_shape = (4, 4)
|
||
|
# [[0, 1, 2, 3],
|
||
|
# [4, 5, 6, 7],
|
||
|
# [8, 9, 10,11],
|
||
|
# [12,13,14,15]]
|
||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||
|
assert device_mesh.convert_map[5] == [1, 1]
|
||
|
assert device_mesh.convert_map[11] == [2, 3]
|
||
|
assert device_mesh.global_rank_to_process_groups_with_logical_rank(0)[0] == [[0, 0], [1, 0], [2, 0], [3, 0]]
|
||
|
assert device_mesh.global_rank_to_process_groups_with_logical_rank(2)[1] == [[0, 0], [0, 1], [0, 2], [0, 3]]
|
||
|
assert device_mesh.global_rank_to_process_groups_with_global_rank(2)[1] == [0, 1, 2, 3]
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_device_mesh()
|