You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/modeling/bloom.py

899 lines
43 KiB

import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
[Shardformer] Merge flash attention branch to pipeline branch (#4362) * [shardformer] supported flash attention test dependency (#4158) * [shardformer] fix flash attention utils test (#4180) * [shardformer] opt support flash attention (#4163) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] add performance benchmark of shardformer (#4175) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] benchmark fix * [shardformer] benchmark fix * [shardformer] llama support flash attention (#4185) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] llama support flash attention * [shardformer] llama support flash attention * [shardformer] Move the import statement for xformer outside the forward function. * [shardformer] gpt2 support flash attention. (#4191) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] bloom support flash attention (#4188) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom suport flash attention * [shardformer] add assert to sequence length * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] bert support flash attention. (#4206) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bert support flash attention * [shardformer] t5 support flash attention. (#4216) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 support flash attention * [shardformer] t5 support flash attention * fix typo * fix typo * fix typo * fix typo * fix typo * fix typo * [shardformer] support 'paddedcausal' type of attention mask in Coloattention. (#4215) * added padded causal attn mask type for ColoAttention * [shardformer]t5 flash attention fix (#4239) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 flash attention fix * [shardformer] update gpt2 to use coloattention. (#4234) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 * [shardformer] update opt and llama to use coloattention. (#4226) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt * [shardformer] shardformer support jit fused operator. (#4236) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add type hint to 'self' param of forward * [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] whisper support flash attention (#4301) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] whisper support flash attention * [shardformer] whisper support flash attention * [shardformer]whisper support jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] sam support flash attention (#4316) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] sam support flash attention --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] merge blip2/chatglm (#4321) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] blip2 support flash attention and jit operator (#4325) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] chatglm support flash attention and jit operator (#4330) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] vit support flash attention and jit operator (#4334) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] vit support flash attention and jit operator * [shardformer] vit support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] fix conflict * [pipeline] fix conflict * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * fix flash attention tests * gemini ignore whisper * fix vit * fix xformers import handle --------- Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com>
1 year ago
from torch.nn import functional as F
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.models.bloom.modeling_bloom import (
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
)
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
def build_bloom_alibi_tensor_fn(process_group: ProcessGroup) -> torch.Tensor:
def build_bloom_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int,
dtype: torch.dtype) -> torch.Tensor:
"""
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
`softmax(l+a) = softmax(l)`. Based on
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
Args:
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
attention_mask (`torch.Tensor`):
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
num_heads (`int`, *required*):
number of heads
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
dtype of the output tensor
"""
import math
if dist.is_initialized():
world_size = dist.get_world_size(process_group)
num_heads = num_heads * world_size
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2**math.floor(math.log2(num_heads))
base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
device=attention_mask.device,
dtype=torch.float32)
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
device=attention_mask.device,
dtype=torch.float32)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1,
1 + 2 * num_remaining_heads,
2,
device=attention_mask.device,
dtype=torch.int32)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None] * arange_tensor
if dist.is_initialized():
num_heads_per_rank = int(num_heads / dist.get_world_size(process_group))
offset = dist.get_rank(process_group) * num_heads_per_rank
alibi = alibi.view(batch_size, num_heads, 1, seq_length)
alibi = alibi[:, offset:num_heads_per_rank + offset, :, :]
return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype)
else:
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
return build_bloom_alibi_tensor
class BloomPipelineForwards:
'''
This class serves as a micro library for bloom pipeline forwards.
'''
@staticmethod
def bloom_model_forward(
self: BloomModel,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor, ...], 'BaseModelOutputWithPastAndCrossAttentions']:
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# add warnings here
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
if use_cache:
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
use_cache = False
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape batch_size x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
# case: First stage of training
if stage_manager.is_first_stage():
# check input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
# initialize in the first stage and then pass to the next stage
else:
input_shape = hidden_states.shape[:-1]
batch_size, seq_length = input_shape
# extra recording tensor should be generated in the first stage
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
if past_key_values is None:
past_key_values = tuple([None] * len(self.h))
# Compute alibi tensor: check build_alibi_tensor documentation,build for every stage
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[2] # source_len
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
else:
attention_mask = attention_mask.to(hidden_states.device)
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
# causal_mask is constructed every stage and its input is passed through different stages
causal_mask = self._prepare_attn_mask(
attention_mask,
input_shape=(batch_size, seq_length),
past_key_values_length=past_key_values_length,
)
start_idx, end_idx = stage_index[0], stage_index[1]
for i, (block, layer_past) in enumerate(zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]),
start=start_idx):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
alibi,
causal_mask,
layer_past,
head_mask[i],
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
alibi=alibi,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + \
(outputs[2 if use_cache else 1],)
if stage_manager.is_last_stage():
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
# TODO: deal with all_hidden_states, all_self_attentions, presents
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if stage_manager.is_last_stage():
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
# attention_mask is not returned ; presents = past_key_values
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
else:
# always return dict for imediate stage
return {'hidden_states': hidden_states}
@staticmethod
def bloom_for_causal_lm_forward(self: BloomForCausalLM,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
**deprecated_arguments):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
transformer_outputs = BloomPipelineForwards.bloom_model_forward(self.transformer,
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index)
past_key_values = None
all_hidden_states = None
all_self_attentions = None
all_cross_attentions = None
if stage_manager.is_last_stage():
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
batch_size, seq_length, vocab_size = shift_logits.shape
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size),
shift_labels.view(batch_size * seq_length))
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
hidden_states = transformer_outputs.get('hidden_states')
return {'hidden_states': hidden_states}
@staticmethod
def bloom_for_sequence_classification_forward(
self: BloomForSequenceClassification,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
**deprecated_arguments,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
transformer_outputs = BloomPipelineForwards.bloom_model_forward(
self.transformer,
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
)
past_key_values = None
all_hidden_states = None
all_self_attentions = None
all_cross_attentions = None
if stage_manager.is_last_stage():
batch_size = hidden_states.shape[0]
#update batch size
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`")
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
hidden_states = transformer_outputs.get('hidden_states')
return {'hidden_states': hidden_states}
@staticmethod
def bloom_for_token_classification_forward(
self: BloomForTokenClassification,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
**deprecated_arguments,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
logger = logging.get_logger(__name__)
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
transformer_outputs = BloomPipelineForwards.bloom_model_forward(
self.transformer,
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
)
past_key_values = None
all_hidden_states = None
all_self_attentions = None
all_cross_attentions = None
if stage_manager.is_last_stage():
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
batch_size, seq_length = labels.shape
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels),
labels.view(batch_size * seq_length))
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
hidden_states = transformer_outputs.get('hidden_states')
return {'hidden_states': hidden_states}
@staticmethod
def bloom_for_question_answering_forward(
self: BloomForQuestionAnswering,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
):
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
logger = logging.get_logger(__name__)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
outputs = BloomPipelineForwards.bloom_model_forward(
self.transformer,
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
)
past_key_values = None
all_hidden_states = None
all_self_attentions = None
all_cross_attentions = None
if stage_manager.is_last_stage():
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
else:
hidden_states = outputs.get('hidden_states')
return {'hidden_states': hidden_states}
[Shardformer] Merge flash attention branch to pipeline branch (#4362) * [shardformer] supported flash attention test dependency (#4158) * [shardformer] fix flash attention utils test (#4180) * [shardformer] opt support flash attention (#4163) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] add performance benchmark of shardformer (#4175) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] benchmark fix * [shardformer] benchmark fix * [shardformer] llama support flash attention (#4185) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] llama support flash attention * [shardformer] llama support flash attention * [shardformer] Move the import statement for xformer outside the forward function. * [shardformer] gpt2 support flash attention. (#4191) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] gpt2 support flash attention * [shardformer] bloom support flash attention (#4188) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom suport flash attention * [shardformer] add assert to sequence length * [shardformer] fix * [shardformer] fix * [shardformer] fix * [shardformer] bert support flash attention. (#4206) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bert support flash attention * [shardformer] t5 support flash attention. (#4216) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 support flash attention * [shardformer] t5 support flash attention * fix typo * fix typo * fix typo * fix typo * fix typo * fix typo * [shardformer] support 'paddedcausal' type of attention mask in Coloattention. (#4215) * added padded causal attn mask type for ColoAttention * [shardformer]t5 flash attention fix (#4239) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] t5 flash attention fix * [shardformer] update gpt2 to use coloattention. (#4234) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 to use coloattention * [shardformer] update gpt2 * [shardformer] update opt and llama to use coloattention. (#4226) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt to use coloattention * [shardformer]update opt * [shardformer] shardformer support jit fused operator. (#4236) * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] opt support flash attention * [shardformer] move to modeling * [shardformer] move to modeling * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] bloom support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] t5 support jit fused operator * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add roadmap of flash attention * [shardformer] add type hint to 'self' param of forward * [shardformer] merge feature/shardformer-models branch to feature/flash-attention-shardformer branch. (#4290) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] whisper support flash attention (#4301) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] whisper support flash attention * [shardformer] whisper support flash attention * [shardformer]whisper support jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] sam support flash attention (#4316) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] sam support flash attention --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> * [shardformer] merge blip2/chatglm (#4321) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] blip2 support flash attention and jit operator (#4325) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator * [shardformer] blip2 support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] chatglm support flash attention and jit operator (#4330) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator * [shardformer] chatglm support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [shardformer] vit support flash attention and jit operator (#4334) * Feature/vit support (#4182) * [shardformer] added tests * [shardformer] vit test finish and support * fix attention dropout * [shardformer] support SAM (#4231) * 1.support sam 2.add fused qkv for nn.Linear * update utils support set element in list * overtwrite SamVisionAttention foward to use DropoutForParallelInput * remove unused code * [shardformer] support whisper (#4212) * support whisper * fix bug in vocabembedding * support downstream model of whisper * update readme * Feature/chatglm (#4240) * [shardformer] added tests * [shardformer] vit test finish and support * [shardformer] chatglm ready * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] chatglm shard without mlp sharding * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] fix chatglm configuration with pre-commit * [shardformer] added tests * [shardformer] vit test finish and support * import chatglm * [shardformer] add test kit in model zoo for chatglm * [sharformer] add first version of policy of chatglm * [shardformer] polish chatglm code * [shardformer] polish code * [shardformer] support chatglm without layernorm * [shardformer] delete some file * [shardformer] ChatGLM support layernorm sharding * [shardformer] register without auto policy * [shardformer] pre-commit check files * [shardformer] support ChatGLMForConditionalGeneration & add fusedlayernorm for vit * [shardformer] support Blip2 (#4243) * support base blip2 * add support for downstream blip2 model * update readme * add forward injection * skip not compatible models test * fix test for gemini and low_level_zero_pugin * [shardformer] vit support flash attention and jit operator * [shardformer] vit support flash attention and jit operator --------- Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com> * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] merge flash attention branch * [pipeline] fix conflict * [pipeline] fix conflict * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * Merge branch 'feature/pipeline' into feature/pipeline * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * activate checks * fix flash attention tests * gemini ignore whisper * fix vit * fix xformers import handle --------- Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Kun Lin <81014421+klhhhhh@users.noreply.github.com> Co-authored-by: FoolPlayer <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: klhhhhh <1412841649@qq.com>
1 year ago
def get_bloom_flash_attention_forward(enabel_jit_fused=False):
try:
from xformers.ops import memory_efficient_attention as me_attention
except:
raise ImportError("Error: xformers module is not installed. Please install it to use flash attention.")
from transformers.models.bloom.modeling_bloom import BloomAttention
def forward(
self: BloomAttention,
hidden_states: torch.Tensor,
residual: torch.Tensor,
alibi: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
fused_qkv = self.query_key_value(hidden_states)
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, tgt_len, _ = hidden_states.size()
assert tgt_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
_, kv_length, _, _ = key_layer.size()
proj_shape = (batch_size, tgt_len, self.num_heads, self.head_dim)
query_layer = query_layer.contiguous().view(*proj_shape)
key_layer = key_layer.contiguous().view(*proj_shape)
value_layer = value_layer.contiguous().view(*proj_shape)
if layer_past is not None:
past_key, past_value = layer_past
# concatenate along seq_length dimension:
# - key: [batch_size * self.num_heads, head_dim, kv_length]
# - value: [batch_size * self.num_heads, kv_length, head_dim]
key_layer = torch.cat((past_key, key_layer), dim=1)
value_layer = torch.cat((past_value, value_layer), dim=1)
if use_cache is True:
present = (key_layer, value_layer)
else:
present = None
tgt_len = key_layer.size()[1]
attention_numerical_mask = torch.zeros((batch_size, self.num_heads, tgt_len, kv_length),
dtype=torch.float32,
device=query_layer.device,
requires_grad=True)
attention_numerical_mask = attention_numerical_mask + alibi.view(batch_size, self.num_heads, 1,
kv_length) * self.beta
attention_numerical_mask = torch.masked_fill(attention_numerical_mask, attention_mask,
torch.finfo(torch.float32).min)
context_layer = me_attention(query_layer,
key_layer,
value_layer,
attn_bias=attention_numerical_mask,
scale=self.inv_norm_factor,
p=self.attention_dropout.p)
context_layer = context_layer.reshape(-1, kv_length, self.hidden_size)
if self.pretraining_tp > 1 and self.slow_but_exact:
slices = self.hidden_size / self.pretraining_tp
output_tensor = torch.zeros_like(context_layer)
for i in range(self.pretraining_tp):
output_tensor = output_tensor + F.linear(
context_layer[:, :, int(i * slices):int((i + 1) * slices)],
self.dense.weight[:, int(i * slices):int((i + 1) * slices)],
)
else:
output_tensor = self.dense(context_layer)
# TODO to replace with the bias_dropout_add function in jit
output_tensor = self.dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
outputs = (output_tensor, present, None)
return outputs
return forward
def get_jit_fused_bloom_attention_forward():
from transformers.models.bloom.modeling_bloom import BloomAttention
def forward(
self: BloomAttention,
hidden_states: torch.Tensor,
residual: torch.Tensor,
alibi: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, q_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
if layer_past is not None:
past_key, past_value = layer_past
# concatenate along seq_length dimension:
# - key: [batch_size * self.num_heads, head_dim, kv_length]
# - value: [batch_size * self.num_heads, kv_length, head_dim]
key_layer = torch.cat((past_key, key_layer), dim=2)
value_layer = torch.cat((past_value, value_layer), dim=1)
_, _, kv_length = key_layer.shape
if use_cache is True:
present = (key_layer, value_layer)
else:
present = None
# [batch_size * num_heads, q_length, kv_length]
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
matmul_result = alibi.baddbmm(
batch1=query_layer,
batch2=key_layer,
beta=self.beta,
alpha=self.inv_norm_factor,
)
# change view to [batch_size, num_heads, q_length, kv_length]
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
input_dtype = attention_scores.dtype
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
if input_dtype == torch.float16:
attention_scores = attention_scores.to(torch.float)
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
# [batch_size, num_heads, q_length, kv_length]
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
# change view [batch_size x num_heads, q_length, kv_length]
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
# matmul: [batch_size * num_heads, q_length, head_dim]
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
# change view [batch_size, num_heads, q_length, head_dim]
context_layer = self._merge_heads(context_layer)
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
if self.pretraining_tp > 1 and self.slow_but_exact:
slices = self.hidden_size / self.pretraining_tp
output_tensor = torch.zeros_like(context_layer)
for i in range(self.pretraining_tp):
output_tensor = output_tensor + F.linear(
context_layer[:, :, int(i * slices):int((i + 1) * slices)],
self.dense.weight[:, int(i * slices):int((i + 1) * slices)],
)
else:
output_tensor = self.dense(context_layer)
output_tensor = self.dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
outputs = (output_tensor, present)
if output_attentions:
outputs += (attention_probs,)
return outputs
return forward
def get_jit_fused_bloom_mlp_forward():
from transformers.models.bloom.modeling_bloom import BloomMLP
def forward(self: BloomMLP, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
if self.pretraining_tp > 1 and self.slow_but_exact:
intermediate_output = torch.zeros_like(residual)
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
for i in range(self.pretraining_tp):
intermediate_output = intermediate_output + F.linear(
hidden_states[:, :, int(i * slices):int((i + 1) * slices)],
self.dense_4h_to_h.weight[:, int(i * slices):int((i + 1) * slices)],
)
else:
intermediate_output = self.dense_4h_to_h(hidden_states)
output = self.dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
return output
return forward
def get_jit_fused_bloom_gelu_forward():
from transformers.models.bloom.modeling_bloom import BloomGelu
from colossalai.kernel.jit.bias_gelu import GeLUFunction as JitGeLUFunction
def forward(self: BloomGelu, x: torch.Tensor) -> torch.Tensor:
bias = torch.zeros_like(x)
if self.training:
return JitGeLUFunction.apply(x, bias)
else:
return self.bloom_gelu_forward(x, bias)
return forward