ColossalAI/colossalai/trainer/_trainer.py

334 lines
12 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Optional
from typing import Union, List
import torch
from torch import Tensor
from torch.utils.data import DataLoader
from tqdm import tqdm
from colossalai.builder import build_hooks
from colossalai.checkpointing import save_checkpoint, load_checkpoint, get_checkpoint_path
from colossalai.context import Config
from colossalai.engine import Engine
from colossalai.logging import get_global_dist_logger
from colossalai.utils import get_global_multitimer, is_dp_rank_0, is_tp_rank_0, is_no_pp_or_last_stage
from colossalai.nn.data import DataParallelSampler
class Trainer:
"""This a class tending for easy deployments of users' training and evaluation instead of
writing their own scripts. It is similar with ``ignite.engine`` and ``keras.engine``, but is
called `Trainer`.
:param engine: Engine responsible for the process function
:param hooks_cfg: The configuration of hooks
:param verbose: If True, additional information will be printed
:type engine: Engine
:type hoooks_cfg: Config, optional
:type verbose: bool, optional
"""
def __init__(self,
engine: Engine,
hooks_cfg: Optional[Config] = None,
verbose: bool = False):
# training-ralated params
self._engine = engine
self._max_epochs = float('inf')
self._max_steps = float('inf')
self._cur_epoch = 0
self._cur_step = 0
# data-related params
self._train_dataloader = None
self._test_dataloader = None
# misc params
self._display_progress = False
self._logger = get_global_dist_logger()
self._verbose = verbose
# hooks can store states in this dict, and could be consumed by other hooks
self.states = {}
# build hooks
self.hooks = list()
if hooks_cfg is not None:
for cfg in hooks_cfg:
hook = build_hooks(cfg, self)
self.hooks.append(hook)
self.hooks.sort(key=lambda hook: hook.priority)
if self._verbose:
for hook in self.hooks:
self._logger.info(
f'build {hook.__class__.__name__} for train, priority = {hook.priority}', ranks=[0])
# timer
self._timer = get_global_multitimer()
@property
def cur_epoch(self):
"""Returns the index of the current epoch.
"""
return self._cur_epoch
@property
def cur_step(self):
"""Returns how many iteration steps have been processed.
"""
return self._cur_step
def call_hooks(self, func, output=None):
"""Calls specific hooks in the current time point.
:param func: A string represents the time point
:param output: Output of the model after running a iteration or None in any other time points
:type func: str
:type output: optional
"""
# Only after iter hook will receive output
for hook in self.hooks:
if output is None:
getattr(hook, func)()
else:
getattr(hook, func)(*output)
def exceed_max_step(self):
"""Checks whether the trainer exceeds the maximum number of runnning iterations.
"""
return self._cur_step >= self._max_steps
def set_epoch(self, epoch):
"""Sets current epoch number.
:param epoch: Epoch number to be set
:type epoch: int
"""
self._cur_epoch = epoch
def _recover_steps(self):
step = self.cur_step * self._engine.schedule.num_steps
self._cur_step = step
def _set_display_progress(self, display_progress: bool):
self._display_progress = display_progress and is_dp_rank_0(
) and is_tp_rank_0() and is_no_pp_or_last_stage()
def _train_epoch(self, epoch: int = None):
# set sampler epoch
if epoch is not None and \
hasattr(self._engine.train_dataloader, 'sampler') and \
isinstance(self._engine.train_dataloader.sampler, DataParallelSampler):
self._engine.train_dataloader.sampler.set_epoch(epoch)
self._engine.train()
progress = range(self._engine.schedule.num_steps)
if self._display_progress:
if epoch is None:
progress = tqdm(progress, desc='[Train]')
else:
progress = tqdm(progress, desc=f'[Epoch {epoch} train]')
# train 1 epoch
self.call_hooks('before_train_epoch')
self._timer.start('train-epoch')
for _ in progress:
self._cur_step += 1
self.call_hooks('before_train_iter')
self._timer.start('train-step')
logits, label, loss = self._engine.step()
self._timer.stop('train-step', keep_in_history=True)
self.call_hooks('after_train_iter', output=(logits, label, loss))
if self.exceed_max_step():
# stop when max iter is reached
break
self._timer.stop('train-epoch', keep_in_history=True)
self.call_hooks('after_train_epoch')
self._timer.reset('train-step')
def _eval(self,
epoch: int = None,
return_loss: bool = True):
# switch engine status
self._engine.eval()
self.call_hooks('before_test')
with torch.no_grad():
# prepare progress bar
progress = range(self._engine.schedule.num_steps)
if self._display_progress:
desc = 'Evaluation'
if epoch is not None:
desc = '[Epoch %d val]' % epoch
progress = tqdm(progress, desc=desc)
self.call_hooks('before_test_epoch')
self._timer.start('test-epoch')
for _ in progress:
self.call_hooks('before_test_iter')
self._timer.start('test-step')
logits, label, loss = self._engine.step(
return_loss=return_loss)
self._timer.stop('test-step', keep_in_history=True)
self.call_hooks('after_test_iter',
output=(logits, label, loss))
self._timer.stop('test-epoch', keep_in_history=True)
self.call_hooks('after_test_epoch')
self.call_hooks('after_test')
self._timer.reset('test-step')
self._timer.reset('test-epoch')
def fit(self,
train_dataloader: DataLoader,
test_dataloader: DataLoader = None,
max_epochs: int = None,
max_steps: int = None,
test_interval: int = 1,
display_progress: bool = False):
"""Trains the model to fit training data.
:param train_dataloader: DataLoader in training
:param test_dataloader: DataLoader in testing
:param max_epochs: Maximum number of epoches
:param max_steps: Maximum number of running iterations
:param test_interval: Interval of testing
:param display_progress: If True, the training progress will be printed
:type train_dataloader: DataLoader
:type test_dataloader: DataLoader
:type max_epochs: int
:type max_steps: int
:type test_interval: int
:type display_progress: bool
"""
# prepare dataloaders
self._train_dataloader = train_dataloader
self._engine.set_dataloader(self._train_dataloader, train=True)
self._engine.train()
should_test = False
if test_dataloader is not None:
self._test_dataloader = test_dataloader
self._engine.set_dataloader(self._test_dataloader, train=False)
should_test = True
# decide the
if max_epochs is not None:
self._max_epochs = max_epochs
if max_steps is not None:
self._max_steps = max_steps
self._set_display_progress(display_progress)
# start train
self.call_hooks('before_train')
# recover step value if resuming training
if self.cur_epoch != 0:
self._recover_steps()
last_epoch = self._cur_epoch
for epoch in range(last_epoch, self._max_epochs):
self._cur_epoch += 1
# train for one epoch
self._train_epoch(epoch)
# start eval
if should_test and epoch % test_interval == 0:
self._eval(epoch, return_loss=True)
# check for termination
if self.exceed_max_step():
self._logger.info(
f"Max number of steps {self._max_steps} has been reached, training is stopped automatically")
break
self.call_hooks('after_train')
self._timer.reset('train-epoch')
def evaluate(self,
test_dataloader: DataLoader,
display_progress: bool = False):
"""Evaluates the model with testing data.
:param test_dataloader: DataLoader in testing
:param display_progress: If True, the evaluation progress will be printed
:type test_dataloader: DataLoader
:type display_progress: bool, optional
"""
# set dataloader
self._test_dataloader = test_dataloader
self._engine.set_dataloader(self._test_dataloader, train=True)
# set
self._set_display_progress(display_progress)
# eval
self._eval(return_loss=True)
def predict(self, data: Union[Tensor, List[Tensor]]):
"""Uses trained model to make a prediction for a tensor or a tensor list.
:param data: Data as the input
:type data: Union[Tensor, List[Tensor]
:return: The output of model as the prediction
:rtype: Tensor
"""
# predict without labels
if isinstance(data, (list, tuple)):
assert isinstance(data[0], Tensor)
else:
assert isinstance(data, Tensor)
self._engine.eval()
# prepare a list of (data, label) to make it iterable
# for compatibility with schedule
simple_dataloader = [(data, None)]
self._engine.set_dataloader(simple_dataloader)
output, _, _ = self._engine.step(return_loss=False)
return output
def save(self, path: str, suffix: str = ''):
"""Saves the model to a file.
:param path: Relative path of the file
:param suffix: Suffix of the file
:type path: str
:type suffix: str, optional
"""
save_path = get_checkpoint_path(path,
self._cur_epoch,
suffix=suffix)
save_checkpoint(save_path, self._cur_epoch, self._engine.get_model(),
self._engine.get_optimizer(),
self._engine.get_lr_scheduler())
def load(self,
path: str,
finetune: bool = False,
strict: bool = False):
"""Loads parameters to the model from a file.
:param path: Relative path of the file
:param finetune: Whether allows to load a part of the model
:param strict: Whether loads a model that has the same shape of parameters
:type path: str
:type finetune: bool, optional
:type strict: bool, optional
"""
last_epoch, _ = load_checkpoint(path,
self._engine.get_model(),
self._engine.get_optimizer(),
self._engine.get_lr_scheduler(),
finetune=finetune,
strict=strict)
if finetune:
self.set_epoch(0)
else:
self.set_epoch(last_epoch)