|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.testing import assert_close
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.cluster import DistCoordinator, ProcessGroupMesh
|
|
|
|
from colossalai.logging import disable_existing_loggers
|
|
|
|
from colossalai.nn.optimizer import DistributedLamb, Lamb
|
|
|
|
from colossalai.tensor.d_tensor import get_shard_dim_1d, is_distributed_tensor
|
|
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
from colossalai.testing.random import seed_all
|
|
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
from tests.test_optimizer._utils import check_optim_states, run_bert_test
|
|
|
|
|
|
|
|
_ALLOWED_P_G_TYPES = [
|
|
|
|
(torch.float, torch.float), # pure fp32
|
|
|
|
(torch.float, torch.bfloat16), # bfloat16 amp
|
|
|
|
]
|
|
|
|
|
|
|
|
_IN_DIM = 32
|
|
|
|
_HID_DIM = 128
|
|
|
|
_N_STEP = 3
|
|
|
|
_SEED = 1024
|
|
|
|
coordinator = None
|
|
|
|
|
|
|
|
Net, data_gen, *_ = next(iter(model_zoo.get_sub_registry("simple_mlp").values()))
|
|
|
|
TPNet, *_ = next(iter(model_zoo.get_sub_registry("simple_tp_mlp").values()))
|
|
|
|
|
|
|
|
|
|
|
|
def assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group):
|
|
|
|
rank = dist.get_rank(tp_group)
|
|
|
|
tp_size = dist.get_world_size(tp_group)
|
|
|
|
|
|
|
|
for (name, p), torch_p in zip(tp_model.named_parameters(), torch_model.parameters()):
|
|
|
|
# if overflow, the weight won't be updated. so there will be no nan in p
|
|
|
|
assert not torch.isnan(p).any()
|
|
|
|
try:
|
|
|
|
if is_distributed_tensor(p):
|
|
|
|
split_dim = get_shard_dim_1d(p)
|
|
|
|
torch_p = torch_p.chunk(tp_size, dim=split_dim)[rank]
|
|
|
|
|
|
|
|
assert_close(p.float(), torch_p, rtol=rtol, atol=atol)
|
|
|
|
except AssertionError as e:
|
|
|
|
print(f"grad mismatch in {name}")
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
|
|
def setup_param_groups(bert_model: nn.Module) -> list:
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
|
|
optimizer_grouped_parameters = [
|
|
|
|
{
|
|
|
|
"params": [p for n, p in bert_model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
|
|
"weight_decay": 0.1,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"params": [p for n, p in bert_model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
|
|
"weight_decay": 0.0,
|
|
|
|
},
|
|
|
|
]
|
|
|
|
return optimizer_grouped_parameters
|
|
|
|
|
|
|
|
|
|
|
|
def force_assign_grad(p, g_dtype, grad=None):
|
|
|
|
"""avoid inconsistent grad and param dtype error"""
|
|
|
|
orig_p = p.data
|
|
|
|
p.data = torch.randn_like(p, device=orig_p.device, dtype=g_dtype) if grad == None else grad
|
|
|
|
p.grad = p.data
|
|
|
|
p.data = orig_p
|
|
|
|
|
|
|
|
|
|
|
|
def set_dist_grad(
|
|
|
|
dist_module: nn.Module,
|
|
|
|
torch_model: nn.Module,
|
|
|
|
g_dtype: torch.dtype,
|
|
|
|
group: dist.ProcessGroup,
|
|
|
|
) -> None:
|
|
|
|
"""
|
|
|
|
Set grads chunks for Tensor Parallel or ZeRO DP.
|
|
|
|
We do not need a separate treatment for ZeRO,
|
|
|
|
as the LowLevelOptimizer takes care of reduce-scattering grads.
|
|
|
|
"""
|
|
|
|
rank = dist.get_rank(group)
|
|
|
|
world_size = dist.get_world_size(group)
|
|
|
|
|
|
|
|
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
|
|
|
if torch_p.grad is None:
|
|
|
|
# avoid inconsistent grad and param dtype error
|
|
|
|
force_assign_grad(torch_p, g_dtype)
|
|
|
|
else:
|
|
|
|
torch_p.grad += torch.randn_like(torch_p, device=torch_p.device, dtype=g_dtype)
|
|
|
|
|
|
|
|
if p.grad is None:
|
|
|
|
force_assign_grad(p, g_dtype)
|
|
|
|
|
|
|
|
if is_distributed_tensor(p):
|
|
|
|
split_dim = get_shard_dim_1d(p)
|
|
|
|
# Add grads only to the correctly split chunk
|
|
|
|
force_assign_grad(p, g_dtype, torch_p.grad.chunk(world_size, dim=split_dim)[rank])
|
|
|
|
# assert_close(p.grad, torch_p.grad.chunk(world_size, dim=split_dim)[rank])
|
|
|
|
else:
|
|
|
|
force_assign_grad(p, g_dtype, torch_p.grad)
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize("p_g_dtype", _ALLOWED_P_G_TYPES)
|
|
|
|
@parameterize("bias_correction", [False, True])
|
|
|
|
@parameterize("tp_zero_size", [(1, 4), (4, 1), (2, 2)])
|
|
|
|
def run_dist_lamb_basic(
|
|
|
|
bias_correction: bool, p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_size: tuple[int, int]
|
|
|
|
) -> None:
|
|
|
|
"""Test without forward"""
|
|
|
|
p_dtype, g_dtype = p_g_dtype
|
|
|
|
tp_size, zero_size = tp_zero_size
|
|
|
|
|
|
|
|
# Set distributed groups
|
|
|
|
rank = dist.get_rank()
|
|
|
|
clear_layout_converter() # Ensure correct sharding
|
|
|
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
|
|
|
tp_group = proc_mesh.get_group_along_axis(0)
|
|
|
|
|
|
|
|
tp_rank = dist.get_rank(tp_group)
|
|
|
|
seed_all(_SEED) # Fix model init
|
|
|
|
torch_model = Net(in_dim=_IN_DIM, hid_dim=_HID_DIM, identity=True).to(rank)
|
|
|
|
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group).to(rank)
|
|
|
|
# Ensure equal weight init
|
|
|
|
assert_close(
|
|
|
|
torch_model.fc1.weight[tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
|
|
|
tp_model.fc1.weight,
|
|
|
|
)
|
|
|
|
assert_close(
|
|
|
|
torch_model.fc2.weight[:, tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
|
|
|
tp_model.fc2.weight,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Set up optimizers
|
|
|
|
lr = 1e-3
|
|
|
|
beta1, beta2 = 0.9, 0.999
|
|
|
|
eps = 1e-8
|
|
|
|
torch_optim = Lamb(
|
|
|
|
setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps, bias_correction=bias_correction
|
|
|
|
)
|
|
|
|
optim = DistributedLamb(
|
|
|
|
setup_param_groups(tp_model),
|
|
|
|
lr=lr,
|
|
|
|
betas=(beta1, beta2),
|
|
|
|
eps=eps,
|
|
|
|
bias_correction=bias_correction,
|
|
|
|
)
|
|
|
|
optim.setup_distributed(tp_group)
|
|
|
|
|
|
|
|
rtol, atol = 8e-7, 8e-7
|
|
|
|
if p_dtype is torch.float16 or g_dtype is torch.float16:
|
|
|
|
rtol, atol = 1e-6, 1e-6
|
|
|
|
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
|
|
|
|
rtol, atol = 2e-6, 2e-6
|
|
|
|
|
|
|
|
for i in range(_N_STEP):
|
|
|
|
seed_all(_SEED + i) # NOTE: having only one manual_seed above doesn't work?
|
|
|
|
set_dist_grad(tp_model, torch_model, g_dtype, tp_group)
|
|
|
|
|
|
|
|
torch_optim.step()
|
|
|
|
optim.step()
|
|
|
|
torch_optim.zero_grad()
|
|
|
|
optim.zero_grad()
|
|
|
|
try:
|
|
|
|
assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group)
|
|
|
|
except Exception as e:
|
|
|
|
coordinator.print_on_master(
|
|
|
|
f"step {i + 1}: bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}"
|
|
|
|
)
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize("p_g_dtype", _ALLOWED_P_G_TYPES)
|
|
|
|
@parameterize("bias_correction", [False, True])
|
|
|
|
@parameterize("tp_zero_size", [(2, 2), (4, 1), (1, 4)])
|
|
|
|
def run_dist_lamb_fwd_bwd(
|
|
|
|
bias_correction: bool, p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_size: tuple[int, int]
|
|
|
|
) -> None:
|
|
|
|
p_dtype, g_dtype = p_g_dtype
|
|
|
|
tp_size, zero_size = tp_zero_size
|
|
|
|
|
|
|
|
# Set distributed groups
|
|
|
|
rank = dist.get_rank()
|
|
|
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
|
|
|
tp_group = proc_mesh.get_group_along_axis(0)
|
|
|
|
dp_group = proc_mesh.get_group_along_axis(1)
|
|
|
|
tp_rank = dist.get_rank(tp_group)
|
|
|
|
|
|
|
|
seed_all(_SEED)
|
|
|
|
clear_layout_converter() # Ensure correct sharding
|
|
|
|
torch_model = Net(_IN_DIM, _HID_DIM).to(rank)
|
|
|
|
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group).to(rank)
|
|
|
|
|
|
|
|
assert_close(
|
|
|
|
torch_model.fc1.weight[tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
|
|
|
tp_model.fc1.weight,
|
|
|
|
)
|
|
|
|
assert_close(
|
|
|
|
torch_model.fc2.weight[:, tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
|
|
|
tp_model.fc2.weight,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Set up optimizers
|
|
|
|
lr = 1e-3
|
|
|
|
beta1, beta2 = 0.9, 0.999
|
|
|
|
eps = 1e-8
|
|
|
|
torch_optim = Lamb(
|
|
|
|
setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps, bias_correction=bias_correction
|
|
|
|
)
|
|
|
|
optim = DistributedLamb(
|
|
|
|
setup_param_groups(tp_model),
|
|
|
|
lr=lr,
|
|
|
|
betas=(beta1, beta2),
|
|
|
|
eps=eps,
|
|
|
|
bias_correction=bias_correction,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Setup distributed optimizer
|
|
|
|
if zero_size > 1:
|
|
|
|
optim = LowLevelZeroOptimizer(
|
|
|
|
optim,
|
|
|
|
overlap_communication=True,
|
|
|
|
initial_scale=128,
|
|
|
|
partition_grad=True,
|
|
|
|
dp_process_group=dp_group,
|
|
|
|
verbose=True,
|
|
|
|
)
|
[MoE/ZeRO] Moe refactor with zero refactor (#5821)
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471)
* [Feauture] MoE refractor; Intergration with Mixtral (#5682)
* cherry pick from refractor-moe branch
* tests passed
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support ep + zero
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* add mixtral auto policy & move pipeline forward code to modeling folder
* [moe refactor] modify kernel test without Route Class
* [moe refactor] add moe tensor test path environment variable to github workflow
* fix typos
* fix moe test bug due to the code rebase
* [moe refactor] fix moe zero test, and little bug in low level zero
* fix typo
* add moe tensor path to github workflow
* remove some useless code
* fix typo & unify global variable XX_AXIS logic without using -1
* fix typo & prettifier the code
* remove print code & support zero 2 test
* remove useless code
* reanme function
* fix typo
* fix typo
* Further improve the test code
* remove print code
* [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test
* [moe refactor] skip some unit test which will be refactored later
* [moe refactor] fix unit import error
* [moe refactor] fix circular import issues
* [moe refactor] remove debug code
* [moe refactor] update github workflow
* [moe/zero] refactor low level optimizer (#5767)
* [zero] refactor low level optimizer
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] MoE refactor with newest version of ZeRO (#5801)
* [zero] remove redundant members in BucketStore (#5802)
* [zero] align api with previous version
* [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819)
* [moe refactor] update unit test with the refactored ZeRO and remove useless test
* move moe checkpoint to checkpoint folder and exchange global axis to class member
* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug
* fix zero unit test
* Add an assertion to prevent users from using it incorrectly
* [hotfix]Solve the compatibility issue of zero refactor (#5823)
* [moe refactor] update unit test with the refactored ZeRO and remove useless test
* move moe checkpoint to checkpoint folder and exchange global axis to class member
* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug
* fix zero unit test
* Add an assertion to prevent users from using it incorrectly
* Modify function parameter names to resolve compatibility issues
* [zero] fix missing hook removal (#5824)
* [MoE] Resolve .github conflict (#5829)
* [Fix/Example] Fix Llama Inference Loading Data Type (#5763)
* [fix/example] fix llama inference loading dtype
* revise loading dtype of benchmark llama3
* [release] update version (#5752)
* [release] update version
* [devops] update compatibility test
* [devops] update compatibility test
* [devops] update compatibility test
* [devops] update compatibility test
* [test] fix ddp plugin test
* [test] fix gptj and rpc test
* [devops] fix cuda ext compatibility
* [inference] fix flash decoding test
* [inference] fix flash decoding test
* fix (#5765)
* [test] Fix/fix testcase (#5770)
* [fix] branch for fix testcase;
* [fix] fix test_analyzer & test_auto_parallel;
* [fix] remove local change about moe;
* [fix] rm local change moe;
* [Hotfix] Add missing init file in inference.executor (#5774)
* [CI/tests] simplify some test case to reduce testing time (#5755)
* [ci/tests] simplify some test case to reduce testing time
* [ci/tests] continue to remove test case to reduce ci time cost
* restore some test config
* [ci/tests] continue to reduce ci time cost
* [misc] update dockerfile (#5776)
* [misc] update dockerfile
* [misc] update dockerfile
* [devops] fix docker ci (#5780)
* [Inference]Add Streaming LLM (#5745)
* Add Streaming LLM
* add some parameters to llama_generation.py
* verify streamingllm config
* add test_streamingllm.py
* modified according to the opinions of review
* add Citation
* change _block_tables tolist
* [hotfix] fix llama flash attention forward (#5777)
* [misc] Accelerate CI for zero and dist optim (#5758)
* remove fp16 from lamb
* remove d2h copy in checking states
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Test/CI] remove test cases to reduce CI duration (#5753)
* [test] smaller gpt2 test case
* [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py
* [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py
* [test] reduce test cases tests/test_zero/test_gemini/test_optim.py
* Revert "[test] smaller gpt2 test case"
Some tests might depend on the size of model (num of chunks)
This reverts commit df705a5210b8901645992adf276e320e48766ebf.
* [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py
* [CI] smaller test model for two mwo the two modifid cases
* [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there
* [hotfix] fix testcase in test_fx/test_tracer (#5779)
* [fix] branch for fix testcase;
* [fix] fix test_analyzer & test_auto_parallel;
* [fix] remove local change about moe;
* [fix] rm local change moe;
* [fix] fix test_deepfm_model & test_dlrf_model;
* [fix] fix test_hf_albert & test_hf_gpt;
* [gemini] optimize reduce scatter d2h copy (#5760)
* [gemini] optimize reduce scatter d2h copy
* [fix] fix missing reduce variable
* [refactor] remove legacy async reduce scatter code
* [gemini] missing sync
* Revert "[refactor] remove legacy async reduce scatter code"
This reverts commit 58ad76d4665032bbe548d066116d1c572ce98979.
* [gemini] further optimize with async all reduce
* [fix] pass flag from manager to chunk
* Allow building cuda extension without a device. (#5535)
Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are.
* [misc] fix dist logger (#5782)
* [install]fix setup (#5786)
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update requirements (#5787)
* [shardformer] fix import (#5788)
* upgrade colossal-chat support tp_group>1, add sp for sft
* upgrade ppo dpo rm script
* run pre-commit
* moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy
* fix training script
* fix ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix transformers version
* remove duplicated test
* fix datasets version
* remove models that require huggingface auth from ci
* remove local data path
* update ci
* remove baichuan from template test due to transformer version conflict
* merge
* Refactor modeling by adding attention backend
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Fix tests and naming
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Pass inference model shard configs for module init
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Clean up
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* replace the customized dataloader setup with the build-in one
* replace the customized dataloader setup with the build-in one
* Remove flash attention backend
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* fix readme
* Fix test import
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* update sft trainning script
* [Inference]refactor baichuan (#5791)
* refactor baichuan
* remove unused code and add TODO for lazyinit
* [test] fix chatglm test kit (#5793)
* [shardformer] fix modeling of bloom and falcon (#5796)
* [test] fix qwen2 pytest distLarge (#5797)
* [Inference] Fix flash-attn import and add model test (#5794)
* Fix torch int32 dtype
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Fix flash-attn import
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Add generalized model test
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Remove exposed path to model
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Add default value for use_flash_attn
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* Rename model test
Signed-off-by: char-1ee <xingjianli59@gmail.com>
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
* [Gemini] Use async stream to prefetch and h2d data moving (#5781)
* use async stream to prefetch and h2d data moving
* Remove redundant code
* [gemini] quick fix on possible async operation (#5803)
* [gemini] quick fix on possible async operation
* [gemini] quick fix on possible async operation
* [shardformer] upgrade transformers to 4.39.3 (#5815)
* [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807)
* [shardformer] fix modeling of gpt2 and gptj
* [shardformer] fix whisper modeling
* [misc] update requirements
---------
Co-authored-by: ver217 <lhx0217@gmail.com>
* [shardformer]upgrade transformers for mistral (#5808)
* upgrade transformers for mistral
* fix
* fix
* [shardformer]upgrade transformers for llama (#5809)
* update transformers
fix
* fix
* fix
* [inference] upgrade transformers (#5810)
* update transformers
fix
* fix
* fix
* fix
* fix
* [gemini] update transformers for gemini (#5814)
---------
Co-authored-by: ver217 <lhx0217@gmail.com>
* Support 4d parallel + flash attention (#5789)
* support tp + sp + pp
* remove comments
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
* [zero] fix hook bug
* [zero] add low level optimizer back (#5839)
* [zero] fix param & refactor
* [zero] add back original low level opt
* [zero] remove moe related
* [zero] pass zero tests
* [zero] refactor
* [chore] add del func back
* [zero] comments and naming (#5840)
* [zero] modify api (#5843)
* [zero] modify api
* [test] remove _grad_store access in tests
* [test] fix (#5857)
* [CI] skip openmoe CI check
* [CI] fox pre-commit
* [zero] remove redundant memebr init (#5862)
* [misc] remove useless code, modify the pg mesh implementation
* [misc] remove useless code, modify the pg mesh implementation
* [misc] use tempfile
* resolve conflict with main branch
* [misc] use tempfile in test_moe_checkpoint.py
* [misc] remove useless code, add assertion about sequence parallel, move logger into function
* [misc] remove useless code
---------
Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
5 months ago
|
|
|
shard_to_param = optim.master_to_working_param
|
|
|
|
optim.optim.setup_distributed(tp_group, dp_group, shard_to_param, is_zero=True)
|
|
|
|
else:
|
|
|
|
optim.setup_distributed(tp_group)
|
|
|
|
|
|
|
|
rtol, atol = 8e-7, 8e-7
|
|
|
|
if p_dtype is torch.float16 or g_dtype is torch.float16:
|
|
|
|
rtol, atol = 1e-6, 1e-6
|
|
|
|
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
|
|
|
|
rtol, atol = 2e-6, 2e-6
|
|
|
|
|
|
|
|
seed_all(_SEED) # NOTE: having only one manual_seed above doesn't work?
|
|
|
|
x = data_gen()
|
|
|
|
x = x.cuda().to(dtype=p_dtype)
|
|
|
|
|
|
|
|
out_tp = tp_model(x)
|
|
|
|
out = torch_model(x)
|
|
|
|
try:
|
|
|
|
assert_close(out, out_tp, rtol=rtol, atol=atol)
|
|
|
|
except Exception as e:
|
|
|
|
coordinator.print_on_master(
|
|
|
|
f"bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}"
|
|
|
|
)
|
|
|
|
raise e
|
|
|
|
|
|
|
|
if zero_size > 1:
|
|
|
|
optim.backward(out_tp.sum())
|
|
|
|
out.sum().backward()
|
|
|
|
else:
|
|
|
|
out_tp.sum().backward()
|
|
|
|
out.sum().backward()
|
|
|
|
|
|
|
|
torch_optim.step()
|
|
|
|
optim.step()
|
|
|
|
torch_optim.zero_grad()
|
|
|
|
optim.zero_grad()
|
|
|
|
try:
|
|
|
|
assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group)
|
|
|
|
check_optim_states(getattr(torch_optim, "optim", torch_optim), getattr(optim, "optim", optim))
|
|
|
|
except Exception as e:
|
|
|
|
coordinator.print_on_master(
|
|
|
|
f"bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}"
|
|
|
|
)
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
|
|
def check_dist_lamb(rank, world_size, port):
|
|
|
|
disable_existing_loggers()
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
|
|
global coordinator
|
|
|
|
coordinator = DistCoordinator()
|
|
|
|
|
|
|
|
run_dist_lamb_basic()
|
|
|
|
coordinator.print_on_master("Basic tests passed")
|
|
|
|
|
|
|
|
run_dist_lamb_fwd_bwd()
|
|
|
|
coordinator.print_on_master("Forward-backward tests passed")
|
|
|
|
|
|
|
|
run_bert_test(optim_class=Lamb, sharded_optim_class=Lamb)
|
|
|
|
print(f"rank {rank} tests passed :)")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_dist_lamb():
|
|
|
|
spawn(check_dist_lamb, nprocs=4)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_dist_lamb()
|